is one of the 26 sporadic groups and was discovered by John Horton Conway (1968, 1969) as the group of automorphisms of the Leech lattice fixing a lattice vector of type 3, thus length √6. It is thus a subgroup of . It is isomorphic to a subgroup of . The direct product is maximal in .
Co3 acts on the unique 23-dimensional even lattice of determinant 4 with no roots, given by the orthogonal complement of a norm 4 vector of the Leech lattice. This gives 23-dimensional representations over any field; over fields of characteristic 2 or 3 this can be reduced to a 22-dimensional faithful representation.
Walter Feit (1974) showed that if a finite group has an absolutely irreducible faithful rational representation of dimension 23 and has no subgroups of index 23 or 24 then it is contained in either or .
Maximal subgroups
Some maximal subgroups fix or reflect 2-dimensional sublattices of the Leech lattice. It is usual to define these planes by h-k-l triangles: triangles including the origin as a vertex, with edges (differences of vertices) being vectors of types h, k, and l.
Larry Finkelstein (1973) found the 14 conjugacy classes of maximal subgroups of as follows:
McL fixes a 2-2-3 triangle. The maximal subgroup also includes reflections of the triangle. has a doubly transitive permutation representation on 276 type 2-2-3 triangles having as an edge a type 3 vector fixed by .
centralizer of an involution of class 2B (trace 0), which moves 264 of the 276 type 2-2-3 triangles
12
[210.33]
27,648 = 210·33
17,931,375 = 34·53·7·11·23
13
S3 × PSL(2,8):3
9,072 = 24·34·7
54,648,000 = 26·33·53·11·23
normalizer of a subgroup of order 3 (class 3C, trace 0)
14
A4 × S5
1,440 = 25·32·5
344,282,400 = 25·35·52·7·11·23
Conjugacy classes
Traces of matrices in a standard 24-dimensional representation of Co3 are shown.[1] The names of conjugacy classes are taken from the Atlas of Finite Group Representations.[2][3]
The cycle structures listed act on the 276 2-2-3 triangles that share the fixed type 3 side.[4]
Class
Order of centralizer
Size of class
Trace
Cycle type
1A
all Co3
1
24
2A
2,903,040
33·52·11·23
8
136,2120
2B
190,080
23·34·52·7·23
0
112,2132
3A
349,920
25·52·7·11·23
-3
16,390
3B
29,160
27·3·52·7·11·23
6
115,387
3C
4,536
27·33·53·11·23
0
392
4A
23,040
2·35·52·7·11·23
-4
116,210,460
4B
1,536
2·36·53·7·11·23
4
18,214,460
5A
1500
28·36·7·11·23
-1
1,555
5B
300
28·36·5·7·11·23
4
16,554
6A
4,320
25·34·52·7·11·23
5
16,310,640
6B
1,296
26·33·53·7·11·23
-1
23,312,639
6C
216
27·34·53·7·11·23
2
13,26,311,638
6D
108
28·34·53·7·11·23
0
13,26,33,642
6E
72
27·35·53·7·11·23
0
34,644
7A
42
29·36·53·11·23
3
13,739
8A
192
24·36·53·7·11·23
2
12,23,47,830
8B
192
24·36·53·7·11·23
-2
16,2,47,830
8C
32
25·37·53·7·11·23
2
12,23,47,830
9A
162
29·33·53·7·11·23
0
32,930
9B
81
210·33·53·7·11·23
3
13,3,930
10A
60
28·36·52·7·11·23
3
1,57,1024
10B
20
28·37·52·7·11·23
0
12,22,52,1026
11A
22
29·37·53·7·23
2
1,1125
power equivalent
11B
22
29·37·53·7·23
2
1,1125
12A
144
26·35·53·7·11·23
-1
14,2,34,63,1220
12B
48
26·36·53·7·11·23
1
12,22,32,64,1220
12C
36
28·35·53·7·11·23
2
1,2,35,43,63,1219
14A
14
29·37·53·11·23
1
1,2,751417
15A
15
210·36·52·7·11·23
2
1,5,1518
15B
30
29·36·52·7·11·23
1
32,53,1517
18A
18
29·35·53·7·11·23
2
6,94,1813
20A
20
28·37·52·7·11·23
1
1,53,102,2012
power equivalent
20B
20
28·37·52·7·11·23
1
1,53,102,2012
21A
21
210·36·53·11·23
0
3,2113
22A
22
29·37·53·7·23
0
1,11,2212
power equivalent
22B
22
29·37·53·7·23
0
1,11,2212
23A
23
210·37·53·7·11
1
2312
power equivalent
23B
23
210·37·53·7·11
1
2312
24A
24
27·36·53·7·11·23
-1
124,6,1222410
24B
24
27·36·53·7·11·23
1
2,32,4,122,2410
30A
30
29·36·52·7·11·23
0
1,5,152,308
Generalized Monstrous Moonshine
In analogy to monstrous moonshine for the monster M, for Co3, the relevant McKay-Thompson series is where one can set the constant term a(0) = 24 (OEIS: A097340),