Computation historyIn computer science, a computation history is a sequence of steps taken by an abstract machine in the process of computing its result. Computation histories are frequently used in proofs about the capabilities of certain machines, and particularly about the undecidability of various formal languages. Formally, a computation history is a (normally finite) sequence of configurations of a formal automaton. Each configuration fully describes the status of the machine at a particular point. To be valid, certain conditions must hold:
In addition, to be complete, a computation history must be finite and
The definitions of "valid initial configuration", "valid transition", and "valid terminal configuration" vary for different kinds of formal machines. A deterministic automaton has exactly one computation history for a given initial configuration, though the history may be infinite and therefore incomplete. Finite-state machinesFor a finite-state machine , a configuration is simply the current state of the machine, together with the remaining input. The first configuration must be the initial state of and the complete input. A transition from a configuration to a configuration is allowed if for some input symbol and if has a transition from to on input . The final configuration must have the empty string as its remaining input; whether has accepted or rejected the input depends on whether the final state is an accepting state. [1] Turing machinesComputation histories are more commonly used in reference to Turing machines. The configuration of a single-tape Turing machine consists of the contents of the tape, the position of the read/write head on the tape, and the current state of the associated state machine; this is usually written
where is the current state of the machine, represented in some way that's distinguishable from the tape language, and where is positioned immediately before the position of the read/write head. Consider a Turing machine on input . The first configuration must be , where is the initial state of the Turing machine. The machine's state in the final configuration must be either (the accept state) or (the reject state). A configuration is a valid successor to configuration if there's a transition from the state in to the state in which manipulates the tape and moves the read/write head in a way that produces the result in .[2] Decidability resultsComputation histories can be used to show that certain problems for pushdown automata are undecidable. This is because the language of non-accepting computation histories of a Turing machine on input is a context-free language recognizable by a non-deterministic pushdown automaton. We encode a Turing computation history as the string , where is the encoding of configuration , as discussed above, and where every other configuration is written in reverse. Before reading a particular configuration, the pushdown automaton makes a non-deterministic choice to either ignore the configuration or read it completely onto the stack.
In addition, the automaton verifies that the first configuration is the correct initial configuration (if not, it accepts) and that the state of the final configuration of the history is the accept state (if not, it accepts). Since a non-deterministic automaton accepts if there's any valid way for it to accept, the automaton described here will discover if the history is not a valid accepting history and will accept if so, and reject if not. [3] This same trick cannot be used to recognize accepting computation histories with an NPDA, since non-determinism could be used to skip past a test that would otherwise fail. A linear-bounded Turing machine is sufficient to recognize accepting computation histories. This result allows us to prove that , the language of pushdown automata which accept all input, is undecidable. Suppose we have a decider for it, . For any Turing machine and input , we can form the pushdown automaton which accepts non-accepting computation histories for that machine. will accept if and only if there are no accepting computation histories for on ; this would allow us to decide , which we know to be undecidable. References
|