Cis-acting replication element

This is a rendering of cis-acting replication element inspired by an image of common cre structure found in Coronavirus from a review paper by Sola et al., 2015[1]

Cis-acting replication elements (cre) bring together the 5′ and 3′ ends during replication of positive-sense single-stranded RNA viruses (for example Picornavirus, Flavivirus, Coronavirus, Togaviruses, Hepatitis C virus) and double-stranded RNA viruses (for example rotavirus and reovirus).[2]

Cre are regions of the viral RNA that act as regulatory signals for essential steps in the virus life cycle[3].  These regions typically fold into loop-like structures and are located in the protein-making part of the genome called the translated region or flanking these regions in parts of the genome called the untranslated region.[3][4]

These folded RNA structures interact with proteins from the virus or host to manage processes like making new viral proteins and replicating the virus’ genetic material.[5] The exact shape and role of these structures vary between different types of viruses.[5]

Function of cres in Viral Replication

Positive-Sense RNA Virus Replication

The replication process of some positive-sense RNA viruses (ie. enteroviruses) proceeds via protein-primed replication.[6] This refers to replication that requires the binding of a protein to the RNA to begin.[6] Viral protein genome-linked (VPg) plays the essential role of the protein primer that initiates the replication process in these viruses.[6][7] However, VPg only becomes an active primer when two uridine nucleotides are added to a tyrosine molecule located on the protein [7].The addition of two uridines to a tyrosine molecule is a process called uridylylation.[7] The uridylylation of the tyrosine molecule on VPg is guided by cres.[7] Once the two necessary uridines have been added, VPg is able to prime the initiation of viral replication.[7]

Cres also affect viral replication through RNA-RNA interactions, specifically interactions between the cre and other regions of the viral genome.[8] These complex and dynamic interactions are necessary for the efficient synthesis of viral DNA and ensure proper internal ribosome entry site (IRES) function.[8] The IRES allows for the recruitment of host ribosomes and the translation of the viral genome in a cap-independent manner.[9] This is an essential step in viral replication as a lot of positive-sense RNA viruses do not possess the chemical cap on the 5' end of their genome necessary for host ribosomes to translate their RNA into protein.[10] Cap-independent translation bypasses this problem, allowing the virus to generate the proteins it needs for replication.

Additionally, cres have been shown to interact with several different host proteins.[11] In Enterovirus A71, cres were shown to bind to the cellular factor insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) with a cooperative relationship. Cre-IGF2BP2 interaction resulted in the increase of both viral replication and IGF2BP2 expression.[12]

Function of cre in Coronavirus

Coronavirus is another example of a positive sense RNA virus that uses cres for many functions including RNA synthesis, transcription and virus particle formation.[13][14] Its single stranded genome contains 3 cre structures located at the 3’ end of the genome that does not produce protein and 5 at the 5’ end.[13] Studies investigating the possible RNA-RNA interactions in coronavirus have found that replication of the viral genome is initiated once the 5’ cre binds to the 3' end of the coronavirus genome.[15][16] This interaction enables the recruitment of RNA dependent RNA polymerase which is a protein used to make new RNA strands. Once RNA synthesis is complete cres are also used to package the viral genome into newly formed virus particles.[17]

Medical Applications of cre

Cre have been identified as attractive antiviral targets for the treatment of diseases caused by viral infections such as hepatitis.[18][19] In the context of Hepatitis B Virus, scientists have proposed the development of small molecules that could disrupt the binding of cres to the viral polymerase causing early replication inhibition.[19]

See also

References

  1. ^ Sola, Isabel; Almazán, Fernando; Zúñiga, Sonia; Enjuanes, Luis (2015-11-09). "Continuous and Discontinuous RNA Synthesis in Coronaviruses". Annual Review of Virology. 2 (1): 265–288. doi:10.1146/annurev-virology-100114-055218. ISSN 2327-056X. PMC 6025776. PMID 26958916.
  2. ^ Cordey, S; Gerlach, D; Junier, T; Zdobnov, EM; Kaiser, L; Tapparel, C (2008). "The cis-acting replication elements define human enterovirus and rhinovirus species". RNA. 14 (8): 1568–1578. doi:10.1261/rna.1031408. PMC 2491478. PMID 18541697.
  3. ^ a b Ríos-Marco, Pablo; Romero-López, Cristina; Berzal-Herranz, Alfredo (2016-05-11). "The cis-acting replication element of the Hepatitis C virus genome recruits host factors that influence viral replication and translation". Scientific Reports. 6 (1): 25729. Bibcode:2016NatSR...625729R. doi:10.1038/srep25729. ISSN 2045-2322. PMC 4863150. PMID 27165399.
  4. ^ Cordey, Samuel; Gerlach, Daniel; Junier, Thomas; Zdobnov, Evgeny M.; Kaiser, Laurent; Tapparel, Caroline (August 2008). "The cis -acting replication elements define human enterovirus and rhinovirus species". RNA. 14 (8): 1568–1578. doi:10.1261/rna.1031408. ISSN 1355-8382. PMC 2491478. PMID 18541697.
  5. ^ a b Liu, Ying; Wimmer, Eckard; Paul, Aniko V. (2009-09-01). "Cis-acting RNA elements in human and animal plus-strand RNA viruses". Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. Structure and Function of Regulatory RNA Elements. 1789 (9): 495–517. doi:10.1016/j.bbagrm.2009.09.007. ISSN 1874-9399. PMC 2783963. PMID 19781674.
  6. ^ a b c Warsaba, Reid; Stoynov, Nikolay; Moon, Kyung-Mee; Flibotte, Stephane; Foster, Leonard; Jan, Eric (2022-09-14). López, Susana (ed.). "Multiple Viral Protein Genome-Linked Proteins Compensate for Viral Translation in a Positive-Sense Single-Stranded RNA Virus Infection". Journal of Virology. 96 (17): e0069922. doi:10.1128/jvi.00699-22. ISSN 0022-538X. PMC 9472611. PMID 35993738.
  7. ^ a b c d e Goodfellow, Ian G.; Kerrigan, David; Evans, David J. (January 2003). "Structure and function analysis of the poliovirus cis -acting replication element (CRE)". RNA. 9 (1): 124–137. doi:10.1261/rna.2950603. ISSN 1355-8382. PMC 1370376. PMID 12554882.
  8. ^ a b Ríos-Marco, Pablo; Romero-López, Cristina; Berzal-Herranz, Alfredo (2016-05-11). "The cis-acting replication element of the Hepatitis C virus genome recruits host factors that influence viral replication and translation". Scientific Reports. 6 (1): 25729. Bibcode:2016NatSR...625729R. doi:10.1038/srep25729. ISSN 2045-2322. PMC 4863150. PMID 27165399.
  9. ^ Martinez-Salas, Encarnacion; Francisco-Velilla, Rosario; Fernandez-Chamorro, Javier; Embarek, Azman M. (2018-01-04). "Insights into Structural and Mechanistic Features of Viral IRES Elements". Frontiers in Microbiology. 8: 2629. doi:10.3389/fmicb.2017.02629. ISSN 1664-302X. PMC 5759354. PMID 29354113.
  10. ^ Rampersad, Sephra; Tennant, Paula (2018-01-01), Tennant, Paula; Fermin, Gustavo; Foster, Jerome E. (eds.), "Chapter 3 - Replication and Expression Strategies of Viruses", Viruses, Academic Press: 55–82, doi:10.1016/b978-0-12-811257-1.00003-6, ISBN 978-0-12-811257-1, PMC 7158166
  11. ^ Watanabe, Tokiko; Kawakami, Eiryo; Shoemaker, Jason E.; Lopes, Tiago J.S.; Matsuoka, Yukiko; Tomita, Yuriko; Kozuka-Hata, Hiroko; Gorai, Takeo; Kuwahara, Tomoko; Takeda, Eiji; Nagata, Atsushi; Takano, Ryo; Kiso, Maki; Yamashita, Makoto; Sakai-Tagawa, Yuko (December 2014). "Influenza Virus-Host Interactome Screen as a Platform for Antiviral Drug Development". Cell Host & Microbe. 16 (6): 795–805. doi:10.1016/j.chom.2014.11.002. ISSN 1931-3128. PMC 4451456. PMID 25464832.
  12. ^ Xi, Juemin; Ma, Chunxia; Wei, Zhizhong; Yin, Bin; Zhao, Siwen; Quan, Wenqi; Yang, Jing; Yuan, Jiangang; Qiang, Boqin; Ye, Fei; Peng, Xiaozhong (2021-01-01). "A single mutation in the cis -acting replication element identified within the EV-A71 2C-coding region causes defects in virus production in cell culture". Emerging Microbes & Infections. 10 (1): 1988–1999. doi:10.1080/22221751.2021.1977590. ISSN 2222-1751. PMC 8526025. PMID 34511027.
  13. ^ a b Malone, Brandon; Urakova, Nadya; Snijder, Eric J.; Campbell, Elizabeth A. (January 2022). "Structures and functions of coronavirus replication–transcription complexes and their relevance for SARS-CoV-2 drug design". Nature Reviews Molecular Cell Biology. 23 (1): 21–39. doi:10.1038/s41580-021-00432-z. ISSN 1471-0080. PMC 8613731. PMID 34824452.
  14. ^ Madhugiri, R.; Fricke, M.; Marz, M.; Ziebuhr, J. (2016), "Coronavirus cis-Acting RNA Elements", Advances in Virus Research, 96, Elsevier: 127–163, doi:10.1016/bs.aivir.2016.08.007, ISBN 978-0-12-804736-1, PMC 7112319, PMID 27712622
  15. ^ Sola, Isabel; Almazán, Fernando; Zúñiga, Sonia; Enjuanes, Luis (2015-11-09). "Continuous and Discontinuous RNA Synthesis in Coronaviruses". Annual Review of Virology. 2 (1): 265–288. doi:10.1146/annurev-virology-100114-055218. ISSN 2327-056X. PMC 6025776. PMID 26958916.
  16. ^ Züst, Roland; Miller, Timothy B.; Goebel, Scott J.; Thiel, Volker; Masters, Paul S. (February 2008). "Genetic Interactions between an Essential 3′ cis -Acting RNA Pseudoknot, Replicase Gene Products, and the Extreme 3′ End of the Mouse Coronavirus Genome". Journal of Virology. 82 (3): 1214–1228. doi:10.1128/JVI.01690-07. ISSN 0022-538X. PMC 2224451. PMID 18032506.
  17. ^ Madhugiri, R.; Fricke, M.; Marz, M.; Ziebuhr, J. (2016-01-01), Ziebuhr, John (ed.), "Coronavirus cis-Acting RNA Elements", Advances in Virus Research, Coronaviruses, 96, Academic Press: 127–163, doi:10.1016/bs.aivir.2016.08.007, ISBN 978-0-12-804736-1, PMC 7112319, PMID 27712622
  18. ^ Glenn, Jeffrey S. (2006-03-01). "Molecular Virology of the Hepatitis C Virus: Implication for Novel Therapies". Infectious Disease Clinics of North America. 20 (1): 81–98. doi:10.1016/j.idc.2006.01.001. ISSN 0891-5520. PMID 16527650.
  19. ^ a b Olenginski, Lukasz T.; Attionu, Solomon K.; Henninger, Erica N.; LeBlanc, Regan M.; Longhini, Andrew P.; Dayie, Theodore K. (2023-09-12). "Hepatitis B Virus Epsilon (ε) RNA Element: Dynamic Regulator of Viral Replication and Attractive Therapeutic Target". Viruses. 15 (9): 1913. doi:10.3390/v15091913. ISSN 1999-4915. PMC 10534774. PMID 37766319.