Chronology of computation of π
The table below is a brief chronology of computed numerical values of, or bounds on, the mathematical constant pi (π ). For more detailed explanations for some of these calculations, see Approximations of π .
As of July 2024, π has been calculated to 202,112,290,000,000 (approximately 202 trillion) decimal digits. The last 100 decimal digits of the latest world record computation are:[ 1]
7034341087 5351110672 0525610978 1945263024 9604509887 5683914937 4658179610 2004394122 9823988073 3622511852
Graph showing how the record precision of numerical approximations to pi measured in decimal places (depicted on a logarithmic scale), evolved in human history. The time before 1400 is compressed.
Before 1400
1400–1949
Date
Who
Note
Decimal places (world records in bold )
All records from 1400 onwards are given as the number of correct decimal places .
1400
Madhava of Sangamagrama
Discovered the infinite power series expansion of π now known as the Leibniz formula for pi [ 13]
10
1424
Jamshīd al-Kāshī [ 14]
16
1573
Valentinus Otho
355 ⁄113
6
1579
François Viète [ 15]
9
1593
Adriaan van Roomen [ 16]
15
1596
Ludolph van Ceulen
20
1615
32
1621
Willebrord Snell (Snellius)
Pupil of Van Ceulen
35
1630
Christoph Grienberger [ 17] [ 18]
38
1654
Christiaan Huygens
Used a geometrical method equivalent to Richardson extrapolation
10
1665
Isaac Newton [ 2]
16
1681
Takakazu Seki [ 19]
11 16
1699
Abraham Sharp [ 2]
Calculated pi to 72 digits, but not all were correct
71
1706
John Machin [ 2]
100
1706
William Jones
Introduced the Greek letter 'π '
1719
Thomas Fantet de Lagny [ 2]
Calculated 127 decimal places, but not all were correct
112
1721
Anonymous
Calculation made in Philadelphia, Pennsylvania , giving the value of pi to 154 digits, 152 of which were correct. First discovered by F. X. von Zach in a library in Oxford, England in the 1780s, and reported to Jean-Étienne Montucla , who published an account of it.[ 20]
152
1722
Toshikiyo Kamata
24
1722
Katahiro Takebe
41
1739
Yoshisuke Matsunaga
51
1748
Leonhard Euler
Used the Greek letter 'π ' in his book Introductio in Analysin Infinitorum and assured its popularity.
1761
Johann Heinrich Lambert
Proved that π is irrational
1775
Euler
Pointed out the possibility that π might be transcendental
1789
Jurij Vega [ 21]
Calculated 140 decimal places, but not all were correct
126
1794
Adrien-Marie Legendre
Showed that π 2 (and hence π ) is irrational, and mentioned the possibility that π might be transcendental.
1824
William Rutherford [ 2]
Calculated 208 decimal places, but not all were correct
152
1844
Zacharias Dase and Strassnitzky[ 2]
Calculated 205 decimal places, but not all were correct
200
1847
Thomas Clausen [ 2]
Calculated 250 decimal places, but not all were correct
248
1853
Lehmann[ 2]
261
1853
Rutherford[ 2]
440
1853
William Shanks [ 22]
Expanded his calculation to 707 decimal places in 1873, but an error introduced at the beginning of his new calculation rendered all of the subsequent digits invalid (the error was found by D. F. Ferguson in 1946).
527
1882
Ferdinand von Lindemann
Proved that π is transcendental (the Lindemann–Weierstrass theorem )
1897
The U.S. state of Indiana
Came close to legislating the value 3.2 (among others) for π . House Bill No. 246 passed unanimously. The bill stalled in the state Senate due to a suggestion of possible commercial motives involving publication of a textbook.[ 23]
0
1910
Srinivasa Ramanujan
Found several rapidly converging infinite series of π , which can compute 8 decimal places of π with each term in the series. Since the 1980s, his series have become the basis for the fastest algorithms currently used by Yasumasa Kanada and the Chudnovsky brothers to compute π .
1946
D. F. Ferguson
Made use of a desk calculator[ 24]
620
1947
Ivan Niven
Gave a very elementary proof that π is irrational
January 1947
D. F. Ferguson
Made use of a desk calculator[ 24]
710
September 1947
D. F. Ferguson
Made use of a desk calculator[ 24]
808
1949
Levi B. Smith and John Wrench
Made use of a desk calculator
1,120
1949–2009
Date
Who
Implementation
Time
Decimal places (world records in bold )
All records from 1949 onwards were calculated with electronic computers.
September 1949
G. W. Reitwiesner et al.
The first to use an electronic computer (the ENIAC ) to calculate π [ 25]
70 hours
2,037
1953
Kurt Mahler
Showed that π is not a Liouville number
1954
S. C. Nicholson & J. Jeenel
Using the NORC [ 26]
13 minutes
3,093
1957
George E. Felton
Ferranti Pegasus computer (London), calculated 10,021 digits, but not all were correct[ 27] [ 28]
33 hours
7,480
January 1958
Francois Genuys
IBM 704 [ 29]
1.7 hours
10,000
May 1958
George E. Felton
Pegasus computer (London)
33 hours
10,021
1959
Francois Genuys
IBM 704 (Paris)[ 30]
4.3 hours
16,167
1961
Daniel Shanks and John Wrench
IBM 7090 (New York)[ 31]
8.7 hours
100,265
1961
J.M. Gerard
IBM 7090 (London)
39 minutes
20,000
February 1966
Jean Guilloud and J. Filliatre
IBM 7030 (Paris)[ 28]
41.92 hours
250,000
1967
Jean Guilloud and M. Dichampt
CDC 6600 (Paris)
28 hours
500,000
1973
Jean Guilloud and Martine Bouyer
CDC 7600
23.3 hours
1,001,250
1981
Kazunori Miyoshi and Yasumasa Kanada
FACOM M-200 [ 28]
137.3 hours
2,000,036
1981
Jean Guilloud
Not known
2,000,050
1982
Yoshiaki Tamura
MELCOM 900II [ 28]
7.23 hours
2,097,144
1982
Yoshiaki Tamura and Yasumasa Kanada
HITAC M-280H [ 28]
2.9 hours
4,194,288
1982
Yoshiaki Tamura and Yasumasa Kanada
HITAC M-280H [ 28]
6.86 hours
8,388,576
1983
Yasumasa Kanada , Sayaka Yoshino and Yoshiaki Tamura
HITAC M-280H [ 28]
<30 hours
16,777,206
October 1983
Yasunori Ushiro and Yasumasa Kanada
HITAC S-810/20
10,013,395
October 1985
Bill Gosper
Symbolics 3670
17,526,200
January 1986
David H. Bailey
CRAY-2 [ 28]
28 hours
29,360,111
September 1986
Yasumasa Kanada , Yoshiaki Tamura
HITAC S-810/20 [ 28]
6.6 hours
33,554,414
October 1986
Yasumasa Kanada , Yoshiaki Tamura
HITAC S-810/20 [ 28]
23 hours
67,108,839
January 1987
Yasumasa Kanada , Yoshiaki Tamura , Yoshinobu Kubo and others
NEC SX-2 [ 28]
35.25 hours
134,214,700
January 1988
Yasumasa Kanada and Yoshiaki Tamura
HITAC S-820/80 [ 32]
5.95 hours
201,326,551
May 1989
Gregory V. Chudnovsky & David V. Chudnovsky
CRAY-2 & IBM 3090/VF
480,000,000
June 1989
Gregory V. Chudnovsky & David V. Chudnovsky
IBM 3090
535,339,270
July 1989
Yasumasa Kanada and Yoshiaki Tamura
HITAC S-820/80
536,870,898
August 1989
Gregory V. Chudnovsky & David V. Chudnovsky
IBM 3090
1,011,196,691
19 November 1989
Yasumasa Kanada and Yoshiaki Tamura
HITAC S-820/80 [ 33]
1,073,740,799
August 1991
Gregory V. Chudnovsky & David V. Chudnovsky
Homemade parallel computer (details unknown, not verified) [ 34] [ 33]
2,260,000,000
18 May 1994
Gregory V. Chudnovsky & David V. Chudnovsky
New homemade parallel computer (details unknown, not verified)
4,044,000,000
26 June 1995
Yasumasa Kanada and Daisuke Takahashi
HITAC S-3800/480 (dual CPU) [ 35]
3,221,220,000
1995
Simon Plouffe
Finds a formula that allows the n th hexadecimal digit of pi to be calculated without calculating the preceding digits.
28 August 1995
Yasumasa Kanada and Daisuke Takahashi
HITAC S-3800/480 (dual CPU) [ 36] [ 37]
56.74 hours?
4,294,960,000
11 October 1995
Yasumasa Kanada and Daisuke Takahashi
HITAC S-3800/480 (dual CPU) [ 38] [ 37]
116.63 hours
6,442,450,000
6 July 1997
Yasumasa Kanada and Daisuke Takahashi
HITACHI SR2201 (1024 CPU) [ 39] [ 40]
29.05 hours
51,539,600,000
5 April 1999
Yasumasa Kanada and Daisuke Takahashi
HITACHI SR8000 (64 of 128 nodes) [ 41] [ 42]
32.9 hours
68,719,470,000
20 September 1999
Yasumasa Kanada and Daisuke Takahashi
HITACHI SR8000/MPP (128 nodes) [ 43] [ 44]
37.35 hours
206,158,430,000
24 November 2002
Yasumasa Kanada & 9 man team
HITACHI SR8000/MPP (64 nodes), Department of Information Science at the University of Tokyo in Tokyo , Japan [ 45]
600 hours
1,241,100,000,000
29 April 2009
Daisuke Takahashi et al.
T2K Open Supercomputer (640 nodes), single node speed is 147.2 gigaflops , computer memory is 13.5 terabytes , Gauss–Legendre algorithm , Center for Computational Sciences at the University of Tsukuba in Tsukuba , Japan [ 46]
29.09 hours
2,576,980,377,524
2009–present
Date
Who
Implementation
Time
Decimal places (world records in bold )
All records from Dec 2009 onwards are calculated and verified on commodity x86 computers with commercially available parts. All use the Chudnovsky algorithm for the main computation, and Bellard's formula , the Bailey–Borwein–Plouffe formula , or both for verification.
31 December 2009
Fabrice Bellard [ 47] [ 48]
Computation: Intel Core i7 @ 2.93 GHz (4 cores, 6 GiB DDR3-1066 RAM)
Storage: 7.5 TB (5x 1.5 TB)
Red Hat Fedora 10 (x64)
Computation of the binary digits (Chudnovsky algorithm): 103 days
Verification of the binary digits (Bellard's formula): 13 days
Conversion to base 10: 12 days
Verification of the conversion: 3 days
Verification of the binary digits used a network of 9 Desktop PCs during 34 hours.
131 days
2,699,999,990,000 = 2.7× 1012 − 104
2 August 2010
Shigeru Kondo[ 49]
using y-cruncher [ 50] 0.5.4 by Alexander Yee
with 2× Intel Xeon X5680 @ 3.33 GHz – (12 physical cores, 24 hyperthreaded)
96 GiB DDR3 @ 1066 MHz – (12× 8 GiB – 6 channels) – Samsung (M393B1K70BH1)
1 TB SATA II (Boot drive) – Hitachi (HDS721010CLA332), 3× 2 TB SATA II (Store Pi Output) – Seagate (ST32000542AS) 16× 2 TB SATA II (Computation) – Seagate (ST32000641AS)
Windows Server 2008 R2 Enterprise (x64)
Computation of binary digits: 80 days
Conversion to base 10: 8.2 days
Verification of the conversion: 45.6 hours
Verification of the binary digits: 64 hours (Bellard formula), 66 hours (BBP formula)
Verification of the binary digits were done simultaneously on two separate computers during the main computation. Both computed 32 hexadecimal digits ending with the 4,152,410,118,610th.[ 51]
90 days
5,000,000,000,000 = 5× 1012
17 October 2011
Shigeru Kondo[ 52]
using y-cruncher 0.5.5
with 2× Intel Xeon X5680 @ 3.33 GHz – (12 physical cores, 24 hyperthreaded)
96 GiB DDR3 @ 1066 MHz – (12× 8 GiB – 6 channels) – Samsung (M393B1K70BH1)
1 TB SATA II (Boot drive) – Hitachi (HDS721010CLA332), 5× 2 TB SATA II (Store Pi Output), 24× 2 TB SATA II (Computation)
Windows Server 2008 R2 Enterprise (x64)
Verification: 1.86 days (Bellard formula) and 4.94 days (BBP formula)
371 days
10,000,000,000,050 = 1013 + 50
28 December 2013
Shigeru Kondo[ 53]
using y-cruncher 0.6.3
Computation: 2× Intel Xeon E5-2690 @ 2.9 GHz – (32 cores, 128 GiB DDR3-1600 RAM)
Storage: 97 TB (32x 3 TB, 1x 1 TB)
Windows Server 2012 (x64)
Verification using Bellard's formula: 46 hours
94 days
12,100,000,000,050 = 1.21× 1013 + 50
8 October 2014
Sandon Nash Van Ness "houkouonchi"[ 54]
using y-cruncher 0.6.3
Computation: 2× Xeon E5-4650L @ 2.6 GHz (16 cores, 192 GiB DDR3-1333 RAM)
Storage: 186 TB (24× 4 TB + 30× 3 TB)
Verification using Bellard's formula: 182 hours
208 days
13,300,000,000,000 = 1.33× 1013
11 November 2016
Peter Trueb[ 55] [ 56]
using y-cruncher 0.7.1
Computation: 4× Xeon E7-8890 v3 @ 2.50 GHz (72 cores, 1.25 TiB DDR4 RAM)
Storage: 120 TB (20× 6 TB)
Linux (x64)
Verification using Bellard's formula: 28 hours[ 57]
105 days
22,459,157,718,361 = ⌊ π e × 10 12⌋
14 March 2019
Emma Haruka Iwao [ 58]
using y-cruncher v0.7.6
Computation: 1× n1-megamem-96 (96 vCPU, 1.4 TB) with 30 TB of SSD
Storage: 24× n1-standard-16 (16 vCPU, 60 GB) with 10 TB of SSD
Windows Server 2016 (x64)
Verification: 20 hours using Bellard's 7-term formula, and 28 hours using Plouffe's 4-term formula
121 days
31,415,926,535,897 = ⌊ π × 10 13⌋
29 January 2020
Timothy Mullican[ 59] [ 60]
using y-cruncher v0.7.7
Computation: 4× Intel Xeon CPU E7-4880 v2 @ 2.5 GHz (60 cores, 320 GB DDR3-1066 RAM)
Storage: 406.5 TB – 48× 6 TB HDDs (Computation) + 47× LTO Ultrium 5 1.5 TB Tapes (Checkpoint Backups) + 12× 4 TB HDDs (Digit Storage)
Ubuntu 18.10 (x64)
Verification: 17 hours using Bellard's 7-term formula, 24 hours using Plouffe's 4-term formula
303 days
50,000,000,000,000 = 5× 1013
14 August 2021
Team DAViS of the University of Applied Sciences of the Grisons [ 61] [ 62]
using y-cruncher v0.7.8
Computation: AMD Epyc 7542 @ 2.9 GHz (32 cores, 1 TiB RAM)
Storage: 608 TB (38× 16 TB HDDs, 34 are used for swapping and 4 used for storage)
Ubuntu 20.04 (x64)
Verification using the 4-term BBP formula: 34 hours
108 days
62,831,853,071,796 = ⌈2π × 10 13 ⌉
21 March 2022
Emma Haruka Iwao [ 63] [ 64]
using y-cruncher v0.7.8
Computation: n2-highmem-128 (128 vCPU and 864 GB RAM)
Storage: 663 TB
Debian Linux 11 (x64)
Verification: 12.6 hours using BBP formula
158 days
100,000,000,000,000 = 1014
18 April 2023
Jordan Ranous[ 65] [ 66]
using y-cruncher v0.7.10
Computation: 2 x AMD EPYC 9654 @ 2.4 GHz (96 cores, 1.5 TiB RAM)
Storage: 583 TB (19× 30.72 TB)
Windows Server 2022 (x64)
59 days
100,000,000,000,000 = 1014
14 March 2024
Jordan Ranous, Kevin O’Brien and Brian Beeler[ 67] [ 68]
using y-cruncher v0.8.3
Computation: 2 x AMD EPYC 9754 @ 2.25 GHz (128 cores, 1.5 TiB RAM)
Storage: 1,105 TB (36× 30.72 TB)
Windows Server 2022 (x64)
75 days
105,000,000,000,000 = 1.05× 1014
28 June 2024
Jordan Ranous, Kevin O’Brien and Brian Beeler[ 69] [ 70]
using y-cruncher v0.8.3
Computation: 2 x Intel Xeon Platinum 8592+ @ 1.9 GHz (128 cores, 1.0 TiB DDR5 RAM)
Storage: 1.5 PB (28× 61.44 TB)
Windows 10 (x64)
104 days
202,112,290,000,000 = 2.0211229 × 1014
See also
References
^ "y-cruncher validation file" .
^ a b c d e f g h i j k l m n o p q r s t u v w David H. Bailey; Jonathan M. Borwein; Peter B. Borwein; Simon Plouffe (1997). "The quest for pi" (PDF) . Mathematical Intelligencer . 19 (1): 50– 57. doi :10.1007/BF03024340 . S2CID 14318695 .
^ "Origins: 3.14159265..." Biblical Archaeology Society . 2022-03-14. Retrieved 2022-06-08 .
^ Eggeling, Julius (1882–1900). The Satapatha-brahmana, according to the text of the Madhyandina school . Princeton Theological Seminary Library. Oxford, The Clarendon Press. pp. 302– 303. {{cite book }}
: CS1 maint: date and year (link )
^ The Sacred Books of the East: The Satapatha-Brahmana, pt. 3 . Clarendon Press. 1894. p. 303. This article incorporates text from this source, which is in the public domain .
^ "4 II. Sulba Sutras" . www-history.mcs.st-and.ac.uk .
^ a b c d e f Ravi P. Agarwal; Hans Agarwal; Syamal K. Sen (2013). "Birth, growth and computation of pi to ten trillion digits" . Advances in Difference Equations . 2013 : 100. doi :10.1186/1687-1847-2013-100 .
^ Plofker, Kim (2009). Mathematics in India . Princeton University Press. p. 18 . ISBN 978-0691120676 .
^ Wilson, David (2000). "The History of Pi" . sites.math.rutgers.edu . University Of Rutgers. Archived from the original on 7 May 2023.
^ Jadhav, Dipak (2018-01-01). "On The Value Implied In The Data Referred To In The Mahābhārata for π" . Vidyottama Sanatana: International Journal of Hindu Science and Religious Studies . 2 (1): 18. doi :10.25078/ijhsrs.v2i1.511 . ISSN 2550-0651 . S2CID 146074061 .
^ 趙良五 (1991). 中西數學史的比較 . 臺灣商務印書館. ISBN 978-9570502688 – via Google Books.
^ Needham, Joseph (1986). Science and Civilization in China: Volume 3, Mathematics and the Sciences of the Heavens and the Earth . Taipei: Caves Books, Ltd. Volume 3, 100.
^ Bag, A. K. (1980). "Indian Literature on Mathematics During 1400–1800 A.D." (PDF) . Indian Journal of History of Science . 15 (1): 86. π ≈ 2,827,433,388,233/9×10−11 = 3.14159 26535 92222..., good to 10 decimal places.
^ approximated 2π to 9 sexagesimal digits. Al-Kashi , author: Adolf P. Youschkevitch, chief editor: Boris A. Rosenfeld, p. 256 O'Connor, John J.; Robertson, Edmund F. , "Ghiyath al-Din Jamshid Mas'ud al-Kashi" , MacTutor History of Mathematics Archive , University of St Andrews Azarian, Mohammad K. (2010). "Al-Risāla Al-Muhītīyya: A Summary" . Missouri Journal of Mathematical Sciences . 22 (2): 64– 85. doi :10.35834/mjms/1312233136 .
^ Viète, François (1579). Canon mathematicus seu ad triangula : cum adpendicibus (in Latin).
^ Romanus , Adrianus (1593). Ideae mathematicae pars prima, sive methodus polygonorum (in Latin). apud Ioannem Keerbergium. hdl :2027/ucm.5320258006 .
^ Grienbergerus, Christophorus (1630). Elementa Trigonometrica (PDF) (in Latin). Archived from the original (PDF) on 2014-02-01.
^ Hobson, Ernest William (1913). 'Squaring the Circle': a History of the Problem (PDF) . Cambridge University Press. p. 27.
^ Yoshio, Mikami ; Eugene Smith, David (2004) [1914]. A History of Japanese Mathematics (paperback ed.). Dover Publications. ISBN 0-486-43482-6 .
^ Benjamin Wardhaugh, "Filling a Gap in the History of π : An Exciting Discovery", Mathematical Intelligencer 38 (1) (2016), 6-7
^ Vega, Géorge (1795) [1789]. "Detérmination de la demi-circonférence d'un cercle dont le diameter est = 1 , exprimée en 140 figures decimals" . Supplement. Nova Acta Academiae Scientiarum Petropolitanae . 11 : 41– 44.
Sandifer, Ed (2006). "Why 140 Digits of Pi Matter" (PDF) . Southern Connecticut State University . Archived from the original (PDF) on 2012-02-04.
^ Hayes, Brian (September 2014). "Pencil, Paper, and Pi" . American Scientist . Vol. 102, no. 5. p. 342. doi :10.1511/2014.110.342 . Retrieved 13 February 2022 .
^ Lopez-Ortiz, Alex (February 20, 1998). "Indiana Bill sets value of Pi to 3" . the news.answers WWW archive . Department of Information and Computing Sciences, Utrecht University. Archived from the original on 2005-01-09. Retrieved 2009-02-01 .
^ a b c Wells, D. G. (May 1, 1998). The Penguin Dictionary of Curious and Interesting Numbers (Revised ed.). Penguin Books. p. 33. ISBN 978-0140261493 .
^ Reitwiesner, G. (1950). "An ENIAC determination of 𝜋 and 𝑒 to more than 2000 decimal places" . Mathematics of Computation . 4 (29): 11– 15. doi :10.1090/S0025-5718-1950-0037597-6 .
^ Nicholson, S. C.; Jeenel, J. (1955). "Some comments on a NORC computation of 𝜋" . Mathematics of Computation . 9 (52): 162– 164. doi :10.1090/S0025-5718-1955-0075672-5 .
^ G. E. Felton, "Electronic computers and mathematicians," Abbreviated Proceedings of the Oxford Mathematical Conference for Schoolteachers and Industrialists at Trinity College, Oxford, April 8–18, 1957, pp. 12–17, footnote pp. 12–53. This published result is correct to only 7480D, as was established by Felton in a second calculation, using formula (5), completed in 1958 but apparently unpublished. For a detailed account of calculations of π see Wrench, J. W. Jr. (1960). "The evolution of extended decimal approximations to π ". The Mathematics Teacher . 53 (8): 644– 650. doi :10.5951/MT.53.8.0644 . JSTOR 27956272 .
^ a b c d e f g h i j k Arndt, Jörg; Haenel, Christoph (2001). Pi - Unleashed . Springer. ISBN 978-3-642-56735-3 .
^ Genuys, F. (1958). "Dix milles decimales de π ". Chiffres . 1 : 17– 22.
^ This unpublished value of x to 16167D was computed on an IBM 704 system at the French Alternative Energies and Atomic Energy Commission in Paris, by means of the program of Genuys
^ Shanks, Daniel; Wrench, John W. J.r (1962). "Calculation of π to 100,000 decimals" . Mathematics of Computation . 16 (77): 76– 99. doi :10.1090/S0025-5718-1962-0136051-9 .
^ Kanada, Y. (November 1988). "Vectorization of multiple-precision arithmetic program and 201,326,000 decimal digits of pi calculation" . Proceedings Supercomputing Vol.II: Science and Applications . pp. 117–128 vol.2. doi :10.1109/SUPERC.1988.74139 . ISBN 0-8186-8923-4 . S2CID 122820709 .
^ a b "Computers" . Science News . 24 August 1991. Retrieved 2022-08-04 .
^ Bigger slices of Pi (determination of the numerical value of pi reaches 2.16 billion decimal digits) Science News 24 August 1991 http://www.encyclopedia.com/doc/1G1-11235156.html
^ ftp://pi.super-computing.org/README.our_last_record_3b [permanent dead link ]
^ ftp://pi.super-computing.org/README.our_last_record_4b [permanent dead link ]
^ a b "GENERAL COMPUTATIONAL UPDATE" . www.cecm.sfu.ca . Retrieved 2022-08-04 .
^ ftp://pi.super-computing.org/README.our_last_record_6b [permanent dead link ]
^ ftp://pi.super-computing.org/README.our_last_record_51b [permanent dead link ]
^ "Record for pi : 51.5 billion decimal digits" . 2005-12-24. Archived from the original on 2005-12-24. Retrieved 2022-08-04 .
^ ftp://pi.super-computing.org/README.our_last_record_68b [permanent dead link ]
^ Kanada, Yasumasa. "plouffe.fr/simon/constants/Pi68billion.txt" . www.plouffe.fr . Archived from the original on 5 August 2022.
^ ftp://pi.super-computing.org/README.our_latest_record_206b [permanent dead link ]
^ "Record for pi : 206 billion decimal digits" . www.cecm.sfu.ca . Retrieved 2022-08-04 .
^ "Archived copy" . Archived from the original on 2011-03-12. Retrieved 2010-07-08 .{{cite web }}
: CS1 maint: archived copy as title (link )
^ "Archived copy" . Archived from the original on 2009-08-23. Retrieved 2009-08-18 .{{cite web }}
: CS1 maint: archived copy as title (link )
^ Bellard, Fabrice (11 Feb 2010). "Computation of 2700 billion decimal digits of Pi using a Desktop Computer" (PDF) . 4th revision. S2CID 12242318 .
^ "TachusPI" . bellard.org . Retrieved 2024-10-10 .
^ "PI-world" . calico.jp . Archived from the original on 31 August 2015. Retrieved 28 August 2015 .
^ "y-cruncher – A Multi-Threaded Pi Program" . numberworld.org . Retrieved 28 August 2015 .
^ "Pi – 5 Trillion Digits" . numberworld.org . Retrieved 28 August 2015 .
^ "Pi – 10 Trillion Digits" . numberworld.org . Retrieved 28 August 2015 .
^ "Pi – 12.1 Trillion Digits" . numberworld.org . Retrieved 28 August 2015 .
^ "Pi: Notable large computations" . numberworld.org . Retrieved 16 March 2024 .
^ "pi2e" . pi2e.ch . Retrieved 15 November 2016 .
^ "Pi: Notable large computations" . numberworld.org . Retrieved 16 March 2024 .
^ "Hexadecimal Digits are Correct! – pi2e trillion digits of pi" . pi2e.ch . 31 October 2016. Retrieved 15 November 2016 .
^ "Google Cloud Topples the Pi Record" . Retrieved 14 March 2019 .
^ "The Pi Record Returns to the Personal Computer" . Retrieved 30 January 2020 .
^ "Calculating Pi: My attempt at breaking the Pi World Record" . 26 June 2019. Retrieved 30 January 2020 .
^ "Pi-Challenge - world record attempt by UAS Grisons - University of Applied Sciences of the Grisons" . www.fhgr.ch . 2021-08-14. Archived from the original on 2021-08-17. Retrieved 2021-08-17 .
^ "Die FH Graubünden kennt Pi am genauesten – Weltrekord! - News - FH Graubünden" . www.fhgr.ch (in German). 2021-08-16. Archived from the original on 2021-08-17. Retrieved 2021-08-17 .
^ "Calculating 100 trillion digits of pi on Google Cloud" . Google Cloud Blog . Retrieved 2022-06-10 .
^ "100 Trillion Digits of Pi" . numberworld.org . Retrieved 2022-06-10 .
^ "StorageReview Calculated 100 Trillion Digits of Pi in 54 days, Besting Google Cloud" . storagereview.com . 18 April 2023. Retrieved 2023-12-02 .
^ "The Need for Speed!" . numberworld.org . 19 April 2023. Retrieved 2023-12-25 .
^ Ranous, Jordan (2024-03-13). "105 Trillion Pi Digits: The Journey to a New Pi Calculation Record" . StorageReview.com . Retrieved 2024-03-14 .
^ Yee, Alexander J. (2024-03-14). "Limping to a new Pi Record of 105 Trillion Digits" . NumberWorld.org . Retrieved 2024-03-16 .
^ Ranous, Jordan (2024-06-28). "StorageReview Lab Breaks Pi Calculation World Record with Over 202 Trillion Digits" . StorageReview.com . Retrieved 2024-07-02 .
^ Yee, Alexander J. (2024-06-28). "Pi Record Smashed at 202 Trillion Digits" . NumberWorld.org . Retrieved 2024-06-30 .
External links