In mathematics, the Cartan–Hadamard conjecture is a fundamental problem in Riemannian geometry and Geometric measure theory which states that the classical isoperimetric inequality may be generalized to spaces of nonpositive sectional curvature , known as Cartan–Hadamard manifolds . The conjecture, which is named after French mathematicians Élie Cartan and Jacques Hadamard , may be traced back to work of André Weil in 1926.
History
The conjecture, in all dimensions, was first stated explicitly in 1976 by Thierry Aubin ,[ 1] and a few years later by Misha Gromov ,[ 2] [ 3] Yuri Burago and
Viktor Zalgaller .[ 4] [ 5] In dimension 2 this fact had already been established in 1926 by André Weil [ 6] and rediscovered in 1933 by Beckenbach and Rado .[ 7] In dimensions 3 and 4 the conjecture was proved by Bruce Kleiner [ 8] in 1992, and Chris Croke [ 9] in 1984 respectively.
According to Marcel Berger ,[ 10] Weil, who was a student of Hadamard at the time, was prompted to work on this problem due to "a question asked during or after a Hadamard seminar at the Collège de France " by the probability theorist Paul Lévy .
Weil's proof relies on conformal maps and harmonic analysis , Croke's proof is based on an inequality of Santaló in integral geometry , while Kleiner adopts a variational approach which reduces the problem to an estimate for total curvature . Mohammad Ghomi and Joel Spruck have shown that Kleiner's approach will work in all dimensions where the total curvature inequality holds.[ 11]
The conjecture has a more general form, sometimes called the "generalized Cartan–Hadamard conjecture"[ 12] which states that if the curvature of the ambient Cartan–Hadamard manifold M is bounded above by a nonpositive constant k, then the least perimeter enclosures in M, for any given volume, cannot have smaller perimeter than a sphere enclosing the same volume
in the model space of constant curvature k.
The generalized conjecture has been established only in dimension 2 by Gerrit Bol ,[ 13] and dimension 3 by Kleiner.[ 14] The generalized conjecture also holds for regions of small volume in all dimensions, as proved by Frank Morgan and David Johnson.[ 15]
Applications
Immediate applications of the conjecture include extensions of the Sobolev inequality and Rayleigh–Faber–Krahn inequality to spaces of nonpositive curvature.
References
^ Aubin, Thierry (1976). "Problèmes isopérimétriques et espaces de Sobolev" . Journal of Differential Geometry . 11 (4): 573– 598. doi :10.4310/jdg/1214433725 . ISSN 0022-040X .
^ Gromov, Mikhael, 1943- (1999). Metric structures for Riemannian and non-Riemannian spaces . Birkhäuser. ISBN 0817638989 . OCLC 37201427 . {{cite book }}
: CS1 maint: multiple names: authors list (link ) CS1 maint: numeric names: authors list (link )
^ Gromov, Mikhael (1981). Structures métriques pour les variétés riemanniennes (in French). CEDIC/Fernand Nathan. ISBN 9782712407148 .
^ Burago, Yuri; Zalgaller, Viktor (1980). Geometricheskie neravenstva . "Nauka, " Leningradskoe otd-nie. OCLC 610467367 .
^ Burago, Yuri; Zalgaller, Viktor (1988). Geometric Inequalities . doi :10.1007/978-3-662-07441-1 . ISBN 978-3-642-05724-3 .
^ Weil, M. André; Hadamard, M. (1979), "Sur les surfaces à courbure négative", Œuvres Scientifiques Collected Papers , Springer New York, pp. 1– 2, doi :10.1007/978-1-4757-1705-1_1 , ISBN 9781475717068
^ Beckenbach, E. F.; Rado, T. (1933). "Subharmonic Functions and Surfaces of Negative Curvature" . Transactions of the American Mathematical Society . 35 (3): 662. doi :10.2307/1989854 . ISSN 0002-9947 . JSTOR 1989854 .
^ Kleiner, Bruce (1992). "An isoperimetric comparison theorem". Inventiones Mathematicae . 108 (1): 37– 47. Bibcode :1992InMat.108...37K . doi :10.1007/bf02100598 . ISSN 0020-9910 . S2CID 16836013 .
^ Croke, Christopher B. (1984). "A sharp four dimensional isoperimetric inequality". Commentarii Mathematici Helvetici . 59 (1): 187– 192. doi :10.1007/bf02566344 . ISSN 0010-2571 . S2CID 120138158 .
^ Berger, Marcel. (2013). A Panoramic View of Riemannian Geometry . Springer Berlin. ISBN 978-3-642-62121-5 . OCLC 864568506 .
^ Ghomi, Mohammad; Spruck, Joel (2022-01-04). "Total Curvature and the Isoperimetric Inequality in Cartan–Hadamard Manifolds" . The Journal of Geometric Analysis . 32 (2): 50. arXiv :1908.09814 . doi :10.1007/s12220-021-00801-2 . ISSN 1559-002X . S2CID 255558870 .
^ Kloeckner, Benoît; Kuperberg, Greg (2019-07-08). "The Cartan–Hadamard conjecture and the Little Prince". Revista Matemática Iberoamericana . 35 (4): 1195– 1258. arXiv :1303.3115 . doi :10.4171/rmi/1082 . ISSN 0213-2230 . S2CID 119165853 .
^ Bol, G. Isoperimetrische Ungleichungen für Bereiche auf Flächen . OCLC 946388942 .
^ Kleiner, Bruce (1992). "An isoperimetric comparison theorem". Inventiones Mathematicae . 108 (1): 37– 47. Bibcode :1992InMat.108...37K . doi :10.1007/bf02100598 . ISSN 0020-9910 . S2CID 16836013 .
^ Morgan, Frank; Johnson, David L. (2000). "Some sharp isoperimetric theorems for Riemannian manifolds" . Indiana University Mathematics Journal . 49 (3): 0. doi :10.1512/iumj.2000.49.1929 . ISSN 0022-2518 .