Caristi fixed-point theorem can be applied to derive other classical fixed-point results, and also to prove the existence of bounded solutions of a functional equation.[5]
Statement of the theorem
Let be a complete metric space. Let and be a lower semicontinuous function from into the non-negative real numbers. Suppose that, for all points in
Then has a fixed point in that is, a point such that The proof of this result utilizes Zorn's lemma to guarantee the existence of a minimal element which turns out to be a desired fixed point.[6]
^Dhompongsa, S.; Kumam, P. (2021). "A Remark on the Caristi's Fixed Point Theorem and the Brouwer Fixed Point Theorem". In Kreinovich, V. (ed.). Statistical and Fuzzy Approaches to Data Processing, with Applications to Econometrics and Other Areas. Berlin: Springer. pp. 93–99. doi:10.1007/978-3-030-45619-1_7. ISBN978-3-030-45618-4.