Carathéodory–Jacobi–Lie theorem

The CarathéodoryJacobiLie theorem is a theorem in symplectic geometry which generalizes Darboux's theorem.

Statement

Let M be a 2n-dimensional symplectic manifold with symplectic form ω. For p ∈ M and r ≤ n, let f1, f2, ..., fr be smooth functions defined on an open neighborhood V of p whose differentials are linearly independent at each point, or equivalently

where {fi, fj} = 0. (In other words, they are pairwise in involution.) Here {–,–} is the Poisson bracket. Then there are functions fr+1, ..., fn, g1, g2, ..., gn defined on an open neighborhood U ⊂ V of p such that (fi, gi) is a symplectic chart of M, i.e., ω is expressed on U as

Applications

As a direct application we have the following. Given a Hamiltonian system as where M is a symplectic manifold with symplectic form and H is the Hamiltonian function, around every point where there is a symplectic chart such that one of its coordinates is H.

References

  • Lee, John M. (2012). Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Vol. 218. doi:10.1007/978-1-4419-9982-5. ISBN 978-1-4419-9981-8.
  • Libermann, P.; Marle, Charles-Michel (6 December 2012). Symplectic Geometry and Analytical Mechanics. ISBN 9789400938076.