They show extensive diversity in tissue distribution and in their subcellular localization. CA1 is closely linked to CA2 and CA3 genes on chromosome 8, and it encodes a cytosolic protein which is found at the highest level in erythrocytes. Transcript variants of CA1 utilizing alternative polyA_sites have been described in literature.[6]
Structure
The human CA1 protein contains an N-terminus active site, zinc binding site, and substrate-binding site.[7] The crystal structure of the human CA1-bicarbonate anion complex reveals the geometry of two H-bonds between the Glu106-Thr199 pair and the Glu117-His119 pair, and one pi H-bond between a water molecule and the phenyl ring of the Tyr114 residue. The product inhibition of CA1 via bicarbonate anions is correlated to the proton localization change on His119. So the Glu117-His119 H-bond is considered to regulate the ionicity of the zinc ion and the binding strength of the bicarbonate anion.[8]
Mechanism
The reaction catalyzed by CA1 is the same as other carbonic anhydrase family proteins:
The CA1-catalyzed reaction has a relatively low reaction affinity (Km) of 4.0 mM for CO2,[7][10]turnover number (Kcat) of 2×105 s−1, and catalytic efficiency (Kcat/Km) of 5×107 M−1s−1 comparing to other isozymes of the α-CA family of carbonic anhydrases. The turnover rate and catalytic rate of CA1 are only about 10% that of CA2 (Kcat: 1.4×106 s−1, Kcat/Km: 1.5×108 M−1s−1).[11]
Function
Carbonic anhydrase 1 belongs to α-CA sub-family and is localized in the cytosol of red blood cell, GI tract, cardiac tissues and other organs or tissues.[12] Transmembrane transport of CA-produced bicarbonate contributes significantly to cellular pH regulation.[13]
In a human zinc-activated variant of CA1, the Michigan Variant, a single point mutation changes His 67 to Arg in a critical region of the active site. This variant of the zinc metalloenzyme appears to be unique in that it possesses esterase activity that is specifically enhanced by added free zinc ions.[14]
As CA1 is an important therapeutic target, development of its inhibitors will contribute to disease treatment. Compared to other CA family members, CA1 has relatively low affinity to common CA inhibitors.[16] Nonetheless, it has medium affinity for CA inhibitor sulfonamides.[citation needed]
^"Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^"Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^Lowe N, Edwards YH, Edwards M, Butterworth PH (Aug 1991). "Physical mapping of the human carbonic anhydrase gene cluster on chromosome 8". Genomics. 10 (4): 882–8. doi:10.1016/0888-7543(91)90176-F. PMID1916821.
^Kumar V, Kannan KK (Aug 1994). "Enzyme-substrate interactions. Structure of human carbonic anhydrase I complexed with bicarbonate". Journal of Molecular Biology. 241 (2): 226–32. doi:10.1006/jmbi.1994.1491. PMID8057362.
^Carbonic acid has a pKa of around 6.36 (the exact value depends on the medium) so at pH 7 a small percentage of the bicarbonate is protonated. See carbonic acid for details concerning the equilibria HCO− 3 + H+ ⇌ H2CO3 and H2CO3 ⇌ CO2 + H2O
^Briganti F, Mangani S, Scozzafava A, Vernaglione G, Supuran CT (Oct 1999). "Carbonic anhydrase catalyzes cyanamide hydration to urea: is it mimicking the physiological reaction?". Journal of Biological Inorganic Chemistry. 4 (5): 528–36. doi:10.1007/s007750050375. PMID10550681. S2CID25890428.
^Silverman DN, Lindskog S (2002-05-01). "The catalytic mechanism of carbonic anhydrase: implications of a rate-limiting protolysis of water". Accounts of Chemical Research. 21 (1): 30–36. doi:10.1021/ar00145a005.
^Ferraroni M, Tilli S, Briganti F, Chegwidden WR, Supuran CT, Wiebauer KE, Tashian RE, Scozzafava A (May 2002). "Crystal structure of a zinc-activated variant of human carbonic anhydrase I, CA I Michigan 1: evidence for a second zinc binding site involving arginine coordination". Biochemistry. 41 (20): 6237–44. doi:10.1021/bi0120446. PMID12009884.
^Gao BB, Clermont A, Rook S, Fonda SJ, Srinivasan VJ, Wojtkowski M, Fujimoto JG, Avery RL, Arrigg PG, Bursell SE, Aiello LP, Feener EP (Feb 2007). "Extracellular carbonic anhydrase mediates hemorrhagic retinal and cerebral vascular permeability through prekallikrein activation". Nature Medicine. 13 (2): 181–8. doi:10.1038/nm1534. PMID17259996. S2CID14404913.
^Supuran CT (Feb 2008). "Carbonic anhydrases: novel therapeutic applications for inhibitors and activators". Nature Reviews. Drug Discovery. 7 (2): 168–81. doi:10.1038/nrd2467. PMID18167490. S2CID3833178.
^Vinayagam A, Stelzl U, Foulle R, Plassmann S, Zenkner M, Timm J, Assmus HE, Andrade-Navarro MA, Wanker EE (Sep 2011). "A directed protein interaction network for investigating intracellular signal transduction". Science Signaling. 4 (189): rs8. doi:10.1126/scisignal.2001699. PMID21900206. S2CID7418133.
Dawson SJ, White LA (May 1992). "Treatment of Haemophilus aphrophilus endocarditis with ciprofloxacin". The Journal of Infection. 24 (3): 317–20. doi:10.1016/S0163-4453(05)80037-4. PMID1602151.
Lowe N, Brady HJ, Barlow JH, Sowden JC, Edwards M, Butterworth PH (Sep 1990). "Structure and methylation patterns of the gene encoding human carbonic anhydrase I". Gene. 93 (2): 277–83. doi:10.1016/0378-1119(90)90236-K. PMID2121614.
Noda Y, Sumitomo S, Hikosaka N, Mori M (Apr 1986). "Immunohistochemical observations on carbonic anhydrase I and II in human salivary glands and submandibular obstructive adenitis". Journal of Oral Pathology. 15 (4): 187–90. doi:10.1111/j.1600-0714.1986.tb00604.x. PMID3088232.
Giraud N, Marriq C, Laurent-Tabusse G (1975). "[Primary structure of human B erythrocyte carbonic anhydrase. 3. Sequence of CNBr fragment I and III (residues 149-260)]". Biochimie. 56 (8): 1031–43. doi:10.1016/S0300-9084(74)80093-3. PMID4217196.
Andersson B, Nyman PO, Strid L (Aug 1972). "Amino acid sequence of human erythrocyte carbonic anhydrase B". Biochemical and Biophysical Research Communications. 48 (3): 670–7. doi:10.1016/0006-291X(72)90400-7. PMID4625868.
Chegwidden WR, Wagner LE, Venta PJ, Bergenhem NC, Yu YS, Tashian RE (1995). "Marked zinc activation of ester hydrolysis by a mutation, 67-His (CAT) to Arg (CGT), in the active site of human carbonic anhydrase I". Human Mutation. 4 (4): 294–6. doi:10.1002/humu.1380040411. PMID7866410. S2CID21458184.
Bekku S, Mochizuki H, Takayama E, Shinomiya N, Fukamachi H, Ichinose M, Tadakuma T, Yamamoto T (Dec 1998). "Carbonic anhydrase I and II as a differentiation marker of human and rat colonic enterocytes". Research in Experimental Medicine. Zeitschrift für die Gesamte Experimentelle Medizin Einschliesslich Experimenteller Chirurgie. 198 (4): 175–85. doi:10.1007/s004330050101. PMID9879596. S2CID11297322.
Puscas I, Coltau M, Baican M, Pasca R, Domuta G, Hecht A (2001). "Vasoconstrictive drugs increase carbonic anhydrase I in vascular smooth muscle while vasodilating drugs reduce the activity of this isozyme by a direct mechanism of action". Drugs Under Experimental and Clinical Research. 27 (2): 53–60. PMID11392054.