Bernstein's theorem (approximation theory)In approximation theory, Bernstein's theorem is a converse to Jackson's theorem.[1] The first results of this type were proved by Sergei Bernstein in 1912.[2] For approximation by trigonometric polynomials, the result is as follows: Let f: [0, 2π] → C be a 2π-periodic function, and assume r is a natural number, and 0 < α < 1. If there exists a number C(f) > 0 and a sequence of trigonometric polynomials {Pn}n ≥ n0 such that then f = Pn0 + φ, where φ has a bounded r-th derivative which is α-Hölder continuous. See alsoReferences
|