The 1971 synthesis consisted of treating cyclopentadiene with methyllithium in dimethyl ether and then with dichloromethane and methyllithium in diethyl ether at −45 °C. It can also be formed in low yield (along with fulvene and Dewar benzene) by irradiation of benzene at 237 to 254 nm.[5] The hydrocarbon in solution was described as having an extremely foul odor. Due to the high steric strain present in benzvalene, the pure compound (~71 kcal/mol higher in energy than benzene) easily detonates, for example by scratching.
Benzvalene can be polymerized in a ROMP process to polybenzvalene.[7] This polymer contains highly strained bicyclobutane rings which again makes it a sensitive material. The rings can be isomerized to 1,3-dienes and for this reason polybenzvalene has been investigated as a precursor to polyacetylene.
References
^Christl, M. (1981). "Benzvalene—Properties and Synthetic Potential". Angewandte Chemie International Edition in English. 20 (67): 529–546. doi:10.1002/anie.198105291.
^Katz, T. J.; Roth, R. J.; Acton, N.; Carnahan, E. J. (1999). "Synthesis of Benzvalene". The Journal of Organic Chemistry. 64 (20): 7663. doi:10.1021/jo990883g.
^Kaplan, Louis; Wilzbach, K. E. (1968-06-01). "Photolysis of benzene vapor. Benzvalene formation at wavelengths 2537-2370 A". Journal of the American Chemical Society. 90 (12): 3291–3292. doi:10.1021/ja01014a086. ISSN0002-7863.
^Scott, Lawrence T.; Jones, Maitland. (1972). "Rearrangements and interconversions of compounds of the formula (CH)n". Chemical Reviews. 72 (2): 181. doi:10.1021/cr60276a004.
^Swager, T. M.; Dougherty, D. A.; Grubbs, R. H. (1988). "Strained rings as a source of unsaturation: polybenzvalene, a new soluble polyacetylene precursor". Journal of the American Chemical Society. 110 (9): 2973. doi:10.1021/ja00217a049.