In mathematics, the Bateman polynomials are a family F n of orthogonal polynomials introduced by Bateman (1933 ). The Bateman–Pasternack polynomials are a generalization introduced by Pasternack (1939) .
Bateman polynomials can be defined by the relation
F
n
(
d
d
x
)
sech
(
x
)
=
sech
(
x
)
P
n
(
tanh
(
x
)
)
.
{\displaystyle F_{n}\left({\frac {d}{dx}}\right)\operatorname {sech} (x)=\operatorname {sech} (x)P_{n}(\tanh(x)).}
where P n is a Legendre polynomial . In terms of generalized hypergeometric functions , they are given by
F
n
(
x
)
=
3
F
2
(
−
n
,
n
+
1
,
1
2
(
x
+
1
)
1
,
1
;
1
)
.
{\displaystyle F_{n}(x)={}_{3}F_{2}\left({\begin{array}{c}-n,~n+1,~{\tfrac {1}{2}}(x+1)\\1,~1\end{array}};1\right).}
Pasternack (1939) generalized the Bateman polynomials to polynomials F m n with
F
n
m
(
d
d
x
)
sech
m
+
1
(
x
)
=
sech
m
+
1
(
x
)
P
n
(
tanh
(
x
)
)
{\displaystyle F_{n}^{m}\left({\frac {d}{dx}}\right)\operatorname {sech} ^{m+1}(x)=\operatorname {sech} ^{m+1}(x)P_{n}(\tanh(x))}
These generalized polynomials also have a representation in terms of generalized hypergeometric functions, namely
F
n
m
(
x
)
=
3
F
2
(
−
n
,
n
+
1
,
1
2
(
x
+
m
+
1
)
1
,
m
+
1
;
1
)
.
{\displaystyle F_{n}^{m}(x)={}_{3}F_{2}\left({\begin{array}{c}-n,~n+1,~{\tfrac {1}{2}}(x+m+1)\\1,~m+1\end{array}};1\right).}
Carlitz (1957) showed that the polynomials Q n studied by Touchard (1956) , see Touchard polynomials , are the same as Bateman polynomials up to a change of variable: more precisely
Q
n
(
x
)
=
(
−
1
)
n
2
n
n
!
(
2
n
n
)
−
1
F
n
(
2
x
+
1
)
{\displaystyle Q_{n}(x)=(-1)^{n}2^{n}n!{\binom {2n}{n}}^{-1}F_{n}(2x+1)}
Bateman and Pasternack's polynomials are special cases of the symmetric continuous Hahn polynomials .
Examples
The polynomials of small n read
F
0
(
x
)
=
1
{\displaystyle F_{0}(x)=1}
;
F
1
(
x
)
=
−
x
{\displaystyle F_{1}(x)=-x}
;
F
2
(
x
)
=
1
4
+
3
4
x
2
{\displaystyle F_{2}(x)={\frac {1}{4}}+{\frac {3}{4}}x^{2}}
;
F
3
(
x
)
=
−
7
12
x
−
5
12
x
3
{\displaystyle F_{3}(x)=-{\frac {7}{12}}x-{\frac {5}{12}}x^{3}}
;
F
4
(
x
)
=
9
64
+
65
96
x
2
+
35
192
x
4
{\displaystyle F_{4}(x)={\frac {9}{64}}+{\frac {65}{96}}x^{2}+{\frac {35}{192}}x^{4}}
;
F
5
(
x
)
=
−
407
960
x
−
49
96
x
3
−
21
320
x
5
{\displaystyle F_{5}(x)=-{\frac {407}{960}}x-{\frac {49}{96}}x^{3}-{\frac {21}{320}}x^{5}}
;
Properties
Orthogonality
The Bateman polynomials satisfy the orthogonality relation[ 1] [ 2]
∫
−
∞
∞
F
m
(
i
x
)
F
n
(
i
x
)
sech
2
(
π
x
2
)
d
x
=
4
(
−
1
)
n
π
(
2
n
+
1
)
δ
m
n
.
{\displaystyle \int _{-\infty }^{\infty }F_{m}(ix)F_{n}(ix)\operatorname {sech} ^{2}\left({\frac {\pi x}{2}}\right)\,dx={\frac {4(-1)^{n}}{\pi (2n+1)}}\delta _{mn}.}
The factor
(
−
1
)
n
{\displaystyle (-1)^{n}}
occurs on the right-hand side of this equation because the Bateman polynomials as defined here must be scaled by a factor
i
n
{\displaystyle i^{n}}
to make them remain real-valued for imaginary argument. The orthogonality relation is simpler when expressed in terms of a modified set of polynomials defined by
B
n
(
x
)
=
i
n
F
n
(
i
x
)
{\displaystyle B_{n}(x)=i^{n}F_{n}(ix)}
, for which it becomes
∫
−
∞
∞
B
m
(
x
)
B
n
(
x
)
sech
2
(
π
x
2
)
d
x
=
4
π
(
2
n
+
1
)
δ
m
n
.
{\displaystyle \int _{-\infty }^{\infty }B_{m}(x)B_{n}(x)\operatorname {sech} ^{2}\left({\frac {\pi x}{2}}\right)\,dx={\frac {4}{\pi (2n+1)}}\delta _{mn}.}
Recurrence relation
The sequence of Bateman polynomials satisfies the recurrence relation[ 3]
(
n
+
1
)
2
F
n
+
1
(
z
)
=
−
(
2
n
+
1
)
z
F
n
(
z
)
+
n
2
F
n
−
1
(
z
)
.
{\displaystyle (n+1)^{2}F_{n+1}(z)=-(2n+1)zF_{n}(z)+n^{2}F_{n-1}(z).}
Generating function
The Bateman polynomials also have the generating function
∑
n
=
0
∞
t
n
F
n
(
z
)
=
(
1
−
t
)
z
2
F
1
(
1
+
z
2
,
1
+
z
2
;
1
;
t
2
)
,
{\displaystyle \sum _{n=0}^{\infty }t^{n}F_{n}(z)=(1-t)^{z}\,_{2}F_{1}\left({\frac {1+z}{2}},{\frac {1+z}{2}};1;t^{2}\right),}
which is sometimes used to define them.[ 4]
References
Al-Salam, Nadhla A. (1967). "A class of hypergeometric polynomials" . Ann. Mat. Pura Appl . 75 (1): 95– 120. doi :10.1007/BF02416800 .
Bateman, H. (1933), "Some properties of a certain set of polynomials." , Tôhoku Mathematical Journal , 37 : 23– 38, JFM 59.0364.02
Carlitz, Leonard (1957), "Some polynomials of Touchard connected with the Bernoulli numbers", Canadian Journal of Mathematics , 9 : 188– 190, doi :10.4153/CJM-1957-021-9 , ISSN 0008-414X , MR 0085361
Koelink, H. T. (1996), "On Jacobi and continuous Hahn polynomials", Proceedings of the American Mathematical Society , 124 (3): 887– 898, arXiv :math/9409230 , doi :10.1090/S0002-9939-96-03190-5 , ISSN 0002-9939 , MR 1307541
Pasternack, Simon (1939), "A generalization of the polynomial Fn (x)", London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science , 28 (187): 209– 226, doi :10.1080/14786443908521175 , MR 0000698
Touchard, Jacques (1956), "Nombres exponentiels et nombres de Bernoulli", Canadian Journal of Mathematics , 8 : 305– 320, doi :10.4153/cjm-1956-034-1 , ISSN 0008-414X , MR 0079021