In geometry, Barrow's inequality is an inequality relating the distances between an arbitrary point within a triangle, the vertices of the triangle, and certain points on the sides of the triangle. It is named after David Francis Barrow.
Statement
Let P be an arbitrary point inside the triangleABC. From P and ABC, define U, V, and W as the points where the angle bisectors of BPC, CPA, and APB intersect the sides BC, CA, AB, respectively. Then Barrow's inequality states that[1]
with equality holding only in the case of an equilateral triangle and P is the center of the triangle.[1]
Generalisation
Barrow's inequality can be extended to convex polygons. For a convex polygon with vertices let be an inner point and the intersections of the angle bisectors of with the associated polygon sides , then the following inequality holds:[2][3]
Here denotes the secant function. For the triangle case the inequality becomes Barrow's inequality due to .
History
Barrow's inequality strengthens the Erdős–Mordell inequality, which has identical form except with PU, PV, and PW replaced by the three distances of P from the triangle's sides. It is named after David Francis Barrow. Barrow's proof of this inequality was published in 1937, as his solution to a problem posed in the American Mathematical Monthly of proving the Erdős–Mordell inequality.[1] This result was named "Barrow's inequality" as early as 1961.[4]
^Hans-Christof Lenhard: "Verallgemeinerung und Verschärfung der Erdös-Mordellschen Ungleichung für Polygone". In: Archiv für Mathematische Logik und Grundlagenforschung, Band 12, S. 311–314, doi:10.1007/BF01650566 (German).