The ballooning instability (a.k.a. ballooning mode instability) is a type of internal pressure-driven plasma instability usually seen in tokamakfusion power reactors[1] or in space plasmas.[2] It is important in fusion research as it determines a set of criteria for the maximum achievable plasma beta.[3] The name refers to the shape and action of the instability, which acts like the elongations formed in a long balloon when it is squeezed. In literature, the structure of these elongations are commonly referred to as 'fingers'.[4][5][6]
The narrow fingers of plasma produced by the instability are capable of accelerating and pushing aside the surrounding magnetic field in order to cause a sudden, explosive release of energy. Thus, the instability is also known as the explosive instability.[7][8][9]
The interchange instability can be derived from the equations of the ballooning instability as a special case in which the ballooning mode does not perturb the equilibrium magnetic field.[2] This special limit is known as the Mercier criterion.[3]
References
^Dobrott, D.; Nelson, D. B.; Greene, J. M.; Glasser, A. H.; Chance, M. S.; Frieman, E. A. (1977-10-10). "Theory of Ballooning Modes in Tokamaks with Finite Shear". Physical Review Letters. 39 (15): 943–946. doi:10.2172/5115796. OSTI5115796.
^Kleva, Robert G.; Guzdar, Parvez N. (2001). "Fast disruptions by ballooning mode ridges and fingers in high temperature, low resistivity toroidal plasmas". Physics of Plasmas. 8 (1): 103–109. Bibcode:2001PhPl....8..103K. doi:10.1063/1.1331098. ISSN1070-664X.