Similarity measure between two invertible matrices
The Amari distance ,[ 1] [ 2] also known as Amari index [ 3] and Amari metric [ 4] is a similarity measure between two invertible matrices , useful for checking for convergence in independent component analysis algorithms and for comparing solutions. It is named after Japanese information theorist Shun'ichi Amari and was originally introduced as a performance index for blind source separation .[ 5]
For two invertible matrices
A
,
B
∈
R
n
×
n
{\displaystyle A,B\in \mathbb {R} ^{n\times n}}
, it is defined as:
d
(
A
,
B
)
=
∑
i
=
1
n
(
∑
j
=
1
n
|
p
i
j
|
max
k
|
p
i
k
|
−
1
)
+
∑
j
=
1
n
(
∑
i
=
1
n
|
p
i
j
|
max
k
|
p
k
j
|
−
1
)
,
P
=
A
−
1
B
{\displaystyle d(A,B)=\sum _{i=1}^{n}\left(\sum _{j=1}^{n}{\frac {|p_{ij}|}{\max _{k}|p_{ik}|}}-1\right)+\sum _{j=1}^{n}\left(\sum _{i=1}^{n}{\frac {|p_{ij}|}{\max _{k}|p_{kj}|}}-1\right),P=A^{-1}B}
It is non-negative and cancels if and only if
A
−
1
B
{\displaystyle A^{-1}B}
is a scale and permutation matrix, i.e. the product of a diagonal matrix and a permutation matrix . The Amari distance is invariant to permutation and scaling of the columns of
A
{\displaystyle A}
and
B
{\displaystyle B}
.[ 6]
References
^ Póczos, Barnabás; Takács, Bálint; Lőrincz, András (2005). Gama, João; Camacho, Rui; Brazdil, Pavel B.; Jorge, Alípio Mário; Torgo, Luís (eds.). "Independent Subspace Analysis on Innovations" . Machine Learning: ECML 2005 . Lecture Notes in Computer Science. Berlin, Heidelberg: Springer: 698– 706. doi :10.1007/11564096_71 . ISBN 978-3-540-31692-3 .
^ "R Graphical Manual – Compute the 'Amari' distance between two matrices" . Archived from the original on 2015-01-09. Retrieved 2019-05-16 .
^ Sobhani, Elaheh; Comon, Pierre; Jutten, Christian; Babaie-Zadeh, Massoud (2022-06-01). "CorrIndex: A permutation invariant performance index" (PDF) . Signal Processing . 195 : 108457. doi :10.1016/j.sigpro.2022.108457 . ISSN 0165-1684 .
^ Hastie, Trevor; Friedman, Jerome; Tibshirani, Robert (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (PDF) . Springer Series in Statistics (2nd ed.). Springer New York. doi :10.1007/978-0-387-84858-7 .
^ Amari, Shun-ichi; Cichocki, Andrzej; Yang, Howard (1995). "A New Learning Algorithm for Blind Signal Separation" (PDF) . Advances in Neural Information Processing Systems . 8 . MIT Press.
^ Bach, Francis R.; Jordan, Michael I. (2002). "Kernel Independent Component Analysis" . Journal of Machine Learning Research . 3 (Jul): 1– 48. ISSN 1533-7928 .