Soper is a world expert in the structure of water and water-based solutions at the molecular level. Using experimental techniques such as neutron and X-ray diffraction, combined with computer simulation and structure refinement, Soper investigates the organisation and behaviour of water molecules, including their interaction with other molecules and surfaces. His work has relevance given the importance of water in the biochemical processes of living organisms.[5]
He has characterised the structure of water under extreme conditions – as found miles down at the bottom of the ocean – and in heavily confined water such as occurs in nanoscopic mineral cavities. He has observed that this water is likely to be under significant tension – about −1000 atmospheres.[5]
Alan Soper is distinguished as the world leading experimentalist on the structure of water and aqueous solutions, and an internationally outstanding expert on the structure of liquids in general. Besides making major and seminal contributions to the study of water and other aqueous systems, including complex systems of high chemical and biological importance, he has been influential in studies of many other liquids and glasses, and has developed novel diffraction instruments and techniques that have revolutionised the field. He has also pioneered the wider use of computer simulation as a tool for building three-dimensional models of the disordered states of matter based on measured data.[1]
^ abcdAnon (2014). "Dr Alan Soper FRS". London: Royal Society. Archived from the original on 17 November 2015. One or more of the preceding sentences incorporates text from the royalsociety.org website where:
^Hardacre, C.; Holbrey, J. D.; McMath, S. E. J.; Bowron, D. T.; Soper, A. K. (2003). "Structure of molten 1,3-dimethylimidazolium chloride using neutron diffraction". The Journal of Chemical Physics. 118 (1): 273–278. Bibcode:2003JChPh.118..273H. doi:10.1063/1.1523917.
^Bowron, D. T.; Soper, A. K.; Jones, K.; Ansell, S.; Birch, S.; Norris, J.; Perrott, L.; Riedel, D.; Rhodes, N. J.; Wakefield, S. R.; Botti, A.; Ricci, M. -A.; Grazzi, F.; Zoppi, M. (2010). "NIMROD: The Near and Inter Mediate Range Order Diffractometer of the ISIS second target station". Review of Scientific Instruments. 81 (3): 033905–033905–10. Bibcode:2010RScI...81c3905B. doi:10.1063/1.3331655. PMID20370190.
^Bowron, D. T.; Soper, A. K.; Jones, K.; Ansell, S.; Birch, S.; Norris, J.; Perrott, L.; Riedel, D.; Rhodes, N. J.; Wakefield, S. R.; Botti, A.; Ricci, M. -A.; Grazzi, F.; Zoppi, M. (2010). "NIMROD: The Near and Inter Mediate Range Order Diffractometer of the ISIS second target station". Review of Scientific Instruments. 81 (3): 033905. Bibcode:2010RScI...81c3905B. doi:10.1063/1.3331655. PMID20370190.
^Tudisca, V.; Bruni, F.; Scoppola, E.; Angelini, R.; Ruzicka, B.; Zulian, L.; Soper, A. K.; Ricci, M. A. (2014). "Neutron diffraction study of aqueous Laponite suspensions at the NIMROD diffractometer". Physical Review E. 90 (3): 032301. Bibcode:2014PhRvE..90c2301T. doi:10.1103/PhysRevE.90.032301. PMID25314440.
^ISIS NIMROD, Science and Technology Facilities Council