In the mathematical field of complex analysis , Akhiezer's theorem is a result about entire functions proved by Naum Akhiezer .[ 1]
Statement
Let
f
:
C
→
C
{\displaystyle f:\mathbb {C} \to \mathbb {C} }
be an entire function of exponential type
τ
{\displaystyle \tau }
, with
f
(
x
)
≥
0
{\displaystyle f(x)\geq 0}
for real
x
{\displaystyle x}
. Then the following are equivalent:
There exists an entire function
F
{\displaystyle F}
, of exponential type
τ
/
2
{\displaystyle \tau /2}
, having all its zeros in the (closed) upper half plane, such that
f
(
z
)
=
F
(
z
)
F
(
z
¯
)
¯
{\displaystyle f(z)=F(z){\overline {F({\overline {z}})}}}
∑
n
|
Im
(
1
/
z
n
)
|
<
∞
{\displaystyle \sum _{n}|\operatorname {Im} (1/z_{n})|<\infty }
where
z
n
{\displaystyle z_{n}}
are the zeros of
f
{\displaystyle f}
.
It is not hard to show that the Fejér–Riesz theorem is a special case.[ 2]
Notes
References
Boas, Jr., Ralph Philip (1954), Entire functions , New York: Academic Press Inc., pp. 124– 132 {{citation }}
: CS1 maint: multiple names: authors list (link )
Boas, Jr., R. P. (1944), "Functions of exponential type. I", Duke Math. J. , 11 : 9– 15, doi :10.1215/s0012-7094-44-01102-6 , ISSN 0012-7094 {{citation }}
: CS1 maint: multiple names: authors list (link )
Akhiezer, N. I. (1948), "On the theory of entire functions of finite degree", Doklady Akademii Nauk SSSR , New Series, 63 : 475– 478, MR 0027333