Study of cactus spines and the chronology of their growth
Acanthochronology is the study of cactusspines or Euphorbiathorns grown in time ordered sequence (i.e. in series). Physical, morphological or chemical characteristics and information about the relative order or absolute age of the spines or thorns is used to study past climate or plant physiology.
For example, columnar cactus spines grow from the apex of the plant. After several weeks the spines stop growing and have been moved to the side of the stem. The old spines remain in place for decades as new spines are created at the continually growing apex.[1] The result is that along each external "rib" of the cactus is a series of spines arranged in the order they grew in – the oldest spines are at the bottom and the youngest spines are at the top. These spines can be dated using bomb-spike[2]Carbon-14 and isotopes of carbon (Carbon-13) and oxygen (Oxygen-18) may be used to infer past climate[3] (e.g. precipitation or temperature), plant stem growth[4] or plant physiology (e.g. photosynthetic processes).[5] Alternatively, the width of small transverse bands[6] in the spine may be used to infer daily information about cloud cover or plant productivity, although this remains to be tested. It has also been shown that regular waxy banding on the sides of a Costa Rican cactus (Lemaireocereus aragonii) indicate annual growth and can be used as temporal chronometers.[7]
The first peer-reviewed article[3] to present and explain an isotope spine series was from a saguaro cactus in Tucson, Arizona. This and other work[6][4] shows that radiocarbon and isotope time-series derived from spines can be used for demographic or palaeoclimate studies.
^ abDelgado-Fernández, Mariana; Garcillán, Pedro P; Ezcurra, Exequiel (2016). "On the Age and Growth Rate of Giant Cacti: Radiocarbon Dating of the Spines of Cardon (Pachycereus Pringlei)". Radiocarbon. 58 (3): 479–490. Bibcode:2016Radcb..58..479D. doi:10.1017/RDC.2016.25. S2CID130664993.
^Hultine, Kevin R; Dettman, David L; English, Nathan B; Williams, David G (2019). "Giant cacti: isotopic recorders of climate variation in warm deserts of the Americas". Journal of Experimental Botany. 70 (22): 6509–6519. doi:10.1093/jxb/erz320. PMID31269200.