Abelian Lie groupIn geometry, an abelian Lie group is a Lie group that is an abelian group. A connected abelian real Lie group is isomorphic to .[1] In particular, a connected abelian (real) compact Lie group is a torus; i.e., a Lie group isomorphic to . A connected complex Lie group that is a compact group is abelian and a connected compact complex Lie group is a complex torus; i.e., a quotient of by a lattice. Let A be a compact abelian Lie group with the identity component . If is a cyclic group, then is topologically cyclic; i.e., has an element that generates a dense subgroup.[2] (In particular, a torus is topologically cyclic.) See alsoCitations
Works cited
|