ZenerbarriereEine Zenerbarriere ist ein elektrisches Betriebsmittel, das als Sicherheitsbarriere im Explosionsschutz eingesetzt wird. Ihre Aufgabe ist die Verhinderung der Zündfähigkeit von Stromkreisen, die in eine explosionsfähige Atmosphäre verlegt werden. Sie soll das Eindringen zündfähiger Energie, Spannung oder Strom in eine explosionsfähige Atmosphäre verhindern. Typische Anwendungsfälle sind die Mess- und Regeltechnik im Bergbau, in der Petrochemie und ähnlichen gefährdeten Industriebereichen. Der Name dieser speziellen Sicherheitsbarriere beruht auf der Anwendung einer Zenerdiode (Z-Diode) als zentrales Schutzelement. AnwendungIn weiten Bereichen produzierender Unternehmen werden Prozesse aller Art automatisiert. Dabei soll die Zuverlässigkeit dieser komplexen Verfahren durch spezielle Mess- und Regelkreise sichergestellt werden. In Anlagen der chemischen Industrie, in denen oft explosionsfähige Atmosphären vorhanden sind, werden Temperaturen überwacht, Drücke geprüft und andere physikalische Größen beobachtet, die wiederum einen Einfluss auf bestimmte Aktoren, wie z. B. Servo- oder Ventilantriebe haben. An den Mess- und Beeinflussungsstellen, die sich fast immer im explosionsgefährdeten Bereich befinden, werden spezielle Sensoren und Aktoren eingesetzt, die für die Verwendung entsprechend den Forderungen des Explosionsschutzes geeignet sind. Die Geräte zur Auswertung sind meist nicht explosionsgeschützt aufgebaut und werden daher in speziellen Schaltwarten installiert, in denen keine explosionsfähige Atmosphäre auftreten kann. Diese Räumlichkeiten werden auch sicherer Bereich genannt. Um zu verhindern, dass die Auswerteelektronik im explosionsfähigen Bereich eine Zündung ermöglicht, wird im Anschaltstromkreis des Sensors eine Zenerbarriere geschaltet, womit der sogenannte eigensichere Stromkreis aus dem sicheren Bereich in den explosionsfähigen Bereich getrennt geführt werden kann. TechnischesDie Idee der Zenerbarriere basiert auf der Zündschutzart Eigensicherheit. Danach definiert sich die Zenerbarriere als zugehöriges Betriebsmittel, das außerhalb der explosionsgefährdeten Umgebung im sicheren Bereich installiert ist. Der eigensichere Stromkreis wird in die explosionsgefährdete Umgebung hinein verlegt. Er wird damit vor dem Eindringen von unzulässig hoher Energie, Spannung und Strom und der damit verbundenen Funkengefahr geschützt. Das für die Begrenzung wesentliche Bauteil ist eine Zenerdiode, da die Zenerbarriere, als Spezialfall der Sicherheitsbarriere, nicht auf dem Prinzip der galvanischen Trennung aufgebaut ist. Als sicherheitstechnisch relevante Bauteile werden auch der Widerstand und die Sicherung angesehen, da durch sie der maximal zu erwartende Strom begrenzt wird. Da übliche elektrische und elektronische Schaltungen nicht den Anforderungen an Eigensicherheit genügen, wird zwischen diese und den eigensicheren Stromkreis eine Zenerbarriere geschaltet. Im Gegensatz zu Stabilisierungsschaltung auf Basis von Zenerdioden findet hier keine Anpassung der Spannung statt, sondern die Zenerbarriere wird bei auftretender Überspannung zerstört. Für die Auslegung der Schaltung und der einzelnen Bauelemente sind potentiell auftretende Fehler zu beachten. Das bedeutet, dass die Möglichkeit des Bauteilausfalls oder auch einer überhöhten Anschlussspannung betrachtet werden muss. Berücksichtigt wird das z. B. dadurch, dass die Zenerdiode zwei- bis dreifach parallel verbaut ist. Durch diese Redundanz wird das Risiko gemindert, dass der Stromkreis bei einem Ausfall zündend wirken könnte. Weiterhin werden die Bauteile hinsichtlich ihrer Belastbarkeit mehrfach überdimensioniert. Dabei muss das Risiko einer Explosion abgewägt werden, d. h. die Explosionsgefahr ist umso größer, je wahrscheinlicher eine explosionsfähige Atmosphäre in der Umgebung des Stromkreises ist. Auch dürfen die Geräte nicht reparierbar sein, so dass von nicht entsprechend geschultem Servicepersonal keine Gefährdung ausgehen kann. Das erreicht man z. B. durch Gehäuse, die sich nicht zerstörungsfrei öffnen lassen oder auch durch Vergießen der Schaltung. RechtlichesBei der Entwicklung von Zenerbarrieren sind die gesetzlichen Anforderungen zum Explosionsschutz zu beachten. Das ist in der Europäischen Union im Wesentlichen die RL 2014/34/EU (ehemals 94/9/EG) des Europäischen Parlamentes und des Rates, sowie deren Umsetzung in das nationale Recht der Mitgliedsstaaten. Weiterhin können zur Konformitätsbewertung die harmonisierten Normen EN 60079-0 (Grundanforderungen) und 60079-11 (eigensichere Geräte) herangezogen werden. Für Zenerbarrieren, mit denen elektrische Geräte in den Zonen 1 und 0 (Kategorie 2 und 1) abgesichert werden sollen, ist eine EG-Baumusterprüfbescheinigung durch eine benannte Stelle notwendig. In Ländern, die nicht der EU angehören, gelten andere landestypische Gesetze und Verordnungen. Für Anwendungen mit Zenerbarrieren sind schon bei der Auswahl alle Regeln der ingenieurmäßigen Sorgfalt zu beachten. Zum einen führt eine zu hohe Eingangsspannung im sicheren Bereich zur Zerstörung des Betriebsmittels, was allerdings keine sicherheitsrelevanten Risiken in sich trägt. Zum anderen ist auf der eigensicheren Seite zu prüfen, ob das ausgewählte Betriebsmittel zu der gewählten Zenerbarriere kompatibel ist, denn insbesondere bei der Zusammenschaltung verschiedener aktiver Betriebsmittel können für Spannung, Strom oder Energie zündfähige Werte erreicht werden, was ein sicherheitsrelevantes Risiko darstellt. Mit der Beurteilung der Zusammenschaltung von Stromkreisen und eigensicheren Systemen beschäftigen sich spezielle Normen. Verwiesen sei auf die DIN EN 60079-14 (Installationsanforderungen, VDE 0165, Teil 1) und DIN EN 60079-25 (Eigensichere Systeme, Nachweis der Eigensicherheit). FunktionsbeschreibungDas Prinzipschaltbild zeigt die Funktion der Zenerbarriere. An den Anschlussklemmen 3 und 4 ist der eigensichere Stromkreis angeschlossen, der in den explosionsgefährdeten Bereich hineinführt. An den Klemmen 1 und 2 ist im Schaltschrank die Auswerteelektronik angeschlossen. Diese gibt eine kleine, unschädliche Spannung ab, die für den Zweck des Stromkreises, im angegebenen Beispiel ist das eine Temperaturmessung, ausreicht. In diesem Normalzustand verhält sich die Zenerbarriere passiv. Die Z-Diode sperrt, da die zwischen den Klemmen 1 und 2 angelegte Spannung kleiner als ihre Durchbruchspannung ist. Der Widerstand R1 wurde entsprechend gering gewählt, so dass er keinen nennenswerten Spannungsfall erzeugt, der einen negativen Einfluss auf die Funktion der Schaltung hätte. Steigt die Spannung zwischen den Klemmen 1 und 2 durch einen Fehler im Schaltschrank über die Durchbruchspannung der Z-Diode, wird diese leitend. Der Strom durch die Z-Diode lässt die Sicherung F1 durchbrennen. Damit ist der eigensichere Stromkreis an Klemme 3 von der unzulässigen Überspannung getrennt und die Gefahr einer Explosion durch Funken gebannt. Die Klemmen 2 und 4 sind gemeinsam geerdet, so dass an ihnen nie eine unzulässig hohe Spannung anliegen kann. Die Zenerbarriere in der dargestellten Bauweise ist nur für Anwendungen geeignet, bei denen an Klemme 1 stets eine positive Spannung anliegt: Die Zenerdiode muss im Normalbetrieb in Sperrrichtung betrieben werden. ProblemeZenerbarrieren sind ein preisgünstiges Betriebsmittel zur Begrenzung der Zündfähigkeit eigensicherer Stromkreise in explosionsgefährdeten Bereichen. Preisgünstige Elemente stellen bei richtiger Anwendung kein Sicherheitsrisiko dar, sondern können dazu beitragen, dass auch in Projekten mit engem finanziellen Spielraum ein akzeptables Sicherheitsniveau erreicht werden kann. Bei Planung oder Einsatz von Zenerbarrieren sind die folgenden Punkte zu beachten:
Normung
Literatur
|