Ultrakurzzeit-SpektroskopieUnter dem Begriff Ultrakurzzeit-Spektroskopie fasst man spektroskopische Messverfahren zusammen, deren zeitliche Auflösung im Bereich von Femtosekunden liegt. Zumeist wird die zeitliche Veränderung spektraler Eigenschaften verfolgt, z. B. die Relaxation eines im angeregten Zustand befindlichen Chromophors in Lösung. GrundlagenBeispiele für häufig mittels Ultrakurzzeit-Spektroskopie untersuchter Phänomene:
Diese Vorgänge ereignen sich typischerweise auf sehr kurzen Zeitskalen von wenigen Femtosekunden bis zu einigen hundert Pikosekunden oder wenigen Nanosekunden. Eine direkte Detektion z. B. durch Photodioden oder Photomultiplier ist aufgrund der begrenzten zeitlichen Auflösung elektronischer Geräte (bestenfalls wenige Nanosekunden) nicht möglich. Zur Beobachtung solcher Phänomene bedarf es eines Femtosekundenlasers, dessen ultrakurze Lichtpulse die benötigte Zeitauflösung auf optischem Wege liefern. Da Lichtpulse als Messinstrument verwendet werden, sind es deshalb ausschließlich optische Eigenschaften, die beobachtet werden können, speziell Transmission, Emission oder Frequenzkonversion. Anregungs-Abfrage-ExperimenteIn einem Anregungs-Abfrage-Experiment (englisch pump-probe experiment) wird das untersuchte System mittels eines kurzen, intensiven Laserpulses in einen angeregten, elektronischen Zustand versetzt (Anregung). Durch einen zweiten Laserpuls, der gegenüber dem Anregungs-Puls zeitlich verzögert ist (z. B. durch einen verlängerten Strahlengang, englisch delay line), wird die Antwort des Systems nach der seit der Anregung verstrichenen Zeit gemessen (Abfrage). Man variiert nun die Verzögerungszeit und misst für jede Verzögerung die momentane (transiente) Antwort des Systems. Trägt man die so gewonnenen Messwerte gegen die Verzögerungszeit auf, dann erhält man Einblick in die Dynamik der nach der Anregung ablaufenden Prozesse. Einzel- und MehrkanaldetektionOptische Antworten werden entweder bei einer einzelnen (Einzelkanaldetektion) oder bei mehreren Wellenlängen eines Spektrums (Mehr- oder Multikanaldetektion) beobachtet. Bei Multikanaldetektion kann die Antwort in verschiedenen Spektralbereichen entweder seriell durch Variation der Wellenlänge eines relativ schmalbandigen Abfragepulses bewerkstelligt werden, oder durch parallele, spektral aufgelöste Detektion eines breitbandigen Abfragepulses (Weißlicht). Da Femtosekundenlaser im Allgemeinen Lichtpulse in einem kleinen Spektralbereich erzeugen, muss dazu der Abfragepuls durch nichtlineare, optische Prozesse frequenzkonvertiert bzw. in Weißlicht umgewandelt werden. Die spektrale Antwort bei einer festen Verzögerungszeit bezeichnet man als transientes Spektrum. Messbare GrößenTransmissionsänderungBei der Untersuchung der Transmissionseigenschaften eines Stoffsystems betrachtet man die Änderung der Transmission , die durch einen Anregungsimpuls hervorgerufen wird. In der Regel wird die Messgröße als Änderung der optischen Dichte angegeben. Dabei ist die Transmission der angeregten Probe und die Transmission der nicht-angeregten Probe. Drei Effekte verändern das Transmissionverhalten gegenüber dem nicht-angeregten Zustand:
Im Falle von photochemischen Reaktionen können Photoprodukte gebildet werden, die analog zur ESA ebenfalls einen positiven Beitrag zur transienten Absorption liefern. Alle drei Prozesse erfolgen mit charakteristischen Ratenkonstanten. EmissionDurch den Anregungsimpuls können im untersuchten System Zustände angeregt werden, die im weiteren Verlauf strahlend relaxieren. Das dabei in alle Raumrichtungen ausgesendete Licht gibt Aufschluss über die Fluoreszenzlebensdauer und den Energieabstand der beteiligten Zustände. FrequenzkonversionEine besonders auf Grenzflächen sensitive Untersuchungsmethode stellt die Summenfrequenzspektroskopie dar, bei der in einem nichtlinearen Prozess an einer Grenzfläche die Frequenz der verwendeten Laserimpulse konvertiert werden. Literatur
|