Gosset hatte festgestellt, dass die standardisierteSchätzfunktion des Stichproben-Mittelwerts normalverteilter Daten nicht mehr normalverteilt, sondern -verteilt ist, wenn die zur Standardisierung des Mittelwerts benötigte Varianz des Merkmals unbekannt ist und mit der Stichprobenvarianz geschätzt werden muss. Seine -Verteilung erlaubt – insbesondere für kleine Stichprobenumfänge – die Berechnung der Verteilung der Differenz vom Mittelwert der Stichprobe zum wahren Mittelwert der Grundgesamtheit.
Die -Werte hängen vom Signifikanzniveau sowie von der Stichprobengröße ab und bestimmen das Vertrauensintervall und damit die Aussagekraft der Schätzung des Mittelwertes. Die -Verteilung wird mit wachsendem schmaler und geht für in die Standardnormalverteilung über (siehe Grafik rechts). Hypothesentests, bei denen die -Verteilung Verwendung findet, bezeichnet man als t-Tests.
Die Herleitung wurde erstmals 1908 veröffentlicht,[1] als Gosset in der DublinerGuinness-Brauerei arbeitete. Da sein Arbeitgeber die Veröffentlichung nicht gestattete, veröffentlichte Gosset sie unter dem Pseudonym Student. Der t-Faktor und die zugehörige Theorie wurden erst durch die Arbeiten von R. A. Fisher belegt, der die Verteilung Student’s distribution (Student'sche Verteilung) nannte.
Die -Verteilung kommt allerdings auch schon in früheren Publikationen anderer Autoren vor. Zuerst wurde sie 1876 von Jacob Lüroth als A-posteriori-Verteilung bei der Behandlung eines Problems der Ausgleichsrechnung hergeleitet, 1883 in einem ähnlichen Zusammenhang von Edgeworth[3][4].
Die Klammer mit der Summe hypergeometrischer Funktionen lässt sich noch etwas einfacher schreiben,[7] sodass ein kürzerer alternativer Ausdruck für die Dichte entsteht:
Mit erhält man die Kennwerte der zentralen -Verteilung.
Beziehung zu anderen Verteilungen
Beziehung zur Cauchy-Verteilung
Für und mit ergibt sich die Cauchy-Verteilung als Spezialfall aus der Studentschen -Verteilung.
Beziehung zur Chi-Quadrat-Verteilung und Standardnormalverteilung
Die -Verteilung beschreibt die Verteilung eines Ausdruckes
wobei eine standardnormalverteilte und eine Chi-Quadrat-verteilte Zufallsvariable mit Freiheitsgraden bedeutet. Die Zählervariable muss unabhängig von der Nennervariable sein. Die Dichtefunktion der -Verteilung ist dann symmetrisch bezüglich ihres Erwartungswertes . Die Werte der Verteilungsfunktion liegen in der Regel tabelliert vor.
Mit steigender Zahl von Freiheitsgraden kann man die Verteilungswerte der -Verteilung mit Hilfe der Normalverteilung annähern. Als Faustregel gilt, dass ab 30 Freiheitsgraden die -Verteilungsfunktion durch die Normalverteilung approximiert werden kann.
Wenn die unabhängigen Zufallsvariablen identisch normalverteilt sind mit Erwartungswert und Standardabweichung , kann bewiesen werden, dass der Stichprobenmittelwert
Also ist der Abstand des gemessenen Mittelwertes vom Mittelwert der Grundgesamtheit verteilt wie . Damit berechnet man dann das 95-%-Konfidenzintervall für den Mittelwert zu
wobei der Wert für implizit durch bestimmt ist, wobei die Verteilungsfunktion einer Zufallsvariablen bezeichnet, die -verteilt ist mit Freiheitsgraden ist. Dieses Intervall ist für etwas größer als dasjenige, welches sich mit bekanntem aus der Verteilungsfunktion der Normalverteilung bei gleichem Konfidenzniveau ergeben hätte .
Herleitung der Dichte
Die Wahrscheinlichkeitsdichte der -Verteilung lässt sich herleiten aus der gemeinsamen Dichte der beiden unabhängigen Zufallsvariablen und , die standardnormal beziehungsweise Chi-Quadrat-verteilt sind:[8]
Mit der Transformation
bekommt man die gemeinsame Dichte von und , wobei und .
Der Wert ist unwichtig, weil er bei der Berechnung der Determinante mit 0 multipliziert wird. Die neue Dichtefunktion schreibt sich also
Gesucht ist nun die Randverteilung als Integral über die nicht interessierende Variable :
Ausgewählte Quantile der t-Verteilung
Tabelliert sind -Werte für verschiedene Freiheitsgrade und gebräuchliche Wahrscheinlichkeiten (0,75 bis 0,999), wofür gilt:
Aufgrund der Spiegelsymmetrie der Dichte braucht man für den Fall des beidseitig symmetrisch begrenzten Intervalls nur die Wahrscheinlichkeitsskala anzupassen. Dabei verringern sich die Wahrscheinlichkeiten bei gleichem , denn das Integrationsintervall wird durch Wegschneiden des Bereichs von bis reduziert:
Werden bei einer Stichprobe Beobachtungen durchgeführt und aus der Stichprobe Parameter geschätzt, so ist die Anzahl der Freiheitsgrade.
Zu der Anzahl von Freiheitsgraden in der ersten Spalte und dem Signifikanzniveau (dargestellt als in der zweiten Zeile) wird in jeder Zelle der folgenden Tabelle der Wert des (einseitigen) Quantils , entsprechend DIN 1319-3, angegeben. Dies erfüllt für die Dichte der -Verteilung die folgenden Gleichungen:
Einseitig:
Zweiseitig:
Also findet man beispielsweise mit und die -Werte von 2,776 (zweiseitig) oder 2,132 (einseitig).
Die Quantilfunktion der -Verteilung ist die Lösung der Gleichung und damit prinzipiell über die Umkehrfunktion zu berechnen. Konkret gilt hier
mit als Inverse der regularisierten unvollständigen Betafunktion. Dieser Wert ist in der Quantiltabelle unter den Koordinaten p und n eingetragen.
Für wenige Werte (1,2,4) vereinfacht sich die Quantilfunktion:[9]
↑Josef Bleymüller, Günther Gehlert, Herbert Gülicher: Statistik für Wirtschaftswissenschaftler. 14. Auflage. Vahlen, 2004, ISBN 3-8006-3115-6, S.16.
↑J. Pfanzagl, O. Sheynin: A forerunner of the t-distribution (Studies in the history of probability and statistics XLIV). In: Biometrika. Band83, Nr.4, 1996, S.891–898, doi:10.1093/biomet/83.4.891.
↑P. Gorroochurn: Classic Topics on the History of Modern Mathematical Statistics from Laplace to More Recent Times. Wiley, 2016, doi:10.1002/9781119127963.
↑N. L. Johnson, B. L. Welch: Applications of the Non-Central t-Distribution. In: Biometrika. Vol. 31, No. 3/4 (Mar. 1940), S. 362–389, JSTOR:2332616doi:10.1093/biomet/31.3-4.362.
↑Frodesen, Skjeggestad, Tofte: Probability and Statistics in Particle Physics. Universitetsforlaget, Bergen/Oslo/Tromsø, S. 141.
↑W. T. Shaw: Sampling Student’s T distribution – Use of the inverse cumulative distribution function. In: Journal of Computational Finance. 9. Jahrgang, Nr.4, 2006, S.37–73, doi:10.21314/JCF.2006.150.