Strontiumoxid

Kristallstruktur
Struktur von Strontiumoxid
_ Sr2+ 0 _ O2−
Kristallsystem

kubisch

Raumgruppe

Fm3m (Nr. 225)Vorlage:Raumgruppe/225

Koordinationszahlen

Sr[6], O[6]

Allgemeines
Name Strontiumoxid
Andere Namen

Ätzstrontian

Verhältnisformel SrO
Kurzbeschreibung

farblos bzw. weiß[1]

Externe Identifikatoren/Datenbanken
CAS-Nummer 1314-11-0
EG-Nummer 215-219-9
ECHA-InfoCard 100.013.837
PubChem 73975
ChemSpider 66603
Wikidata Q418413
Eigenschaften
Molare Masse 103,62 g·mol−1
Aggregatzustand

fest

Dichte

5,0 g·cm−3[2]

Schmelzpunkt

2430 °C[3]

Siedepunkt

3200 °C[3]

Löslichkeit

Zersetzung in Wasser[3]

Brechungsindex

1,8710[4]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung[3]
Gefahrensymbol

Gefahr

H- und P-Sätze H: 314
P: 280​‐​301+330+331​‐​303+361+353​‐​305+351+338​‐​310[3]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet.
Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa). Brechungsindex: Na-D-Linie, 20 °C

Strontiumoxid ist das Oxid des Erdalkalimetalls Strontium. Es ist in reinem Zustand ein weißes Pulver, in technischer Qualität durch Fremdbeimengungen oft grau gefärbt, die beispielsweise durch Oxidation des sehr reaktionsfähigen Strontiums entstehen.

Gewinnung und Darstellung

Strontiumoxid lässt sich aus Strontiumcarbonat, das sich in der Natur als Mineral Strontianit findet, gewinnen. Bei 1268 °C unter normalem Luftdruck zerfällt Strontiumcarbonat zu Strontiumoxid und Kohlenstoffdioxid:

Eigenschaften

Strontiumoxid kristallisiert in der Natriumchlorid-Struktur. Bei hohen Drücken von >36 GPa wird eine Phasenumwandlung zu einer Caesiumchlorid-Struktur beobachtet. Dies geht mit einer Volumenverkleinerung von 13 % einher, die Dichte des Kristalls steigt auf über 7,1 g/cm3.[2]

Mit Wasser reagiert Strontiumoxid unter Wärmeentwicklung zu Strontiumhydroxid:

Mit Hilfe von Aluminiumgrieß lässt sich Strontiumoxid zu Strontium reduzieren (Aluminothermie):

Verwendung

Strontiumoxid wird in der Glasindustrie zur Herstellung von Spezialgläsern verwendet, so wird etwa das Oxid dem Glas von Bildschirmröhren zur Strahlungsminderung beigemengt. Früher wurde Strontiumoxid bei der Herstellung von Rübenzucker eingesetzt (Strontianverfahren).[5]

Weiterhin wird es aufgrund seiner hohen Schmelztemperatur und seiner geringen Elektronenaustrittsarbeit von 1,0 eV als Beschichtungsmaterial auf Kathoden, zum Beispiel aus Wolfram, eingesetzt. Dadurch wird es eine Oxidkathode. Siehe hierzu Austrittsarbeit. Da es jedoch wasserlöslich ist, werden in Anwendungen, bei denen das Vakuum für Wartungsarbeiten unterbrochen werden muss, und feuchte Atmosphärenluft in die Anlage eindringen kann, andere Werkstoffe bevorzugt. Daher beschränkt sich der Einsatz in der Praxis auf Anlagen, die kontinuierlich im Vakuum betrieben werden. In diesen dauerhaft geschlossenen Dioden erlauben sie Glühemission bei bereits 800 K.

Einzelnachweise

  1. David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet-Version: 2010), CRC Press / Taylor and Francis, Boca Raton FL, Physical Constants of Inorganic Compounds, S. 5-92.
  2. a b Yosiko Sato, Raymond Jeanloz: Phase Transition in SrO. In: Journal of Geophysical Research. 86, 1981, S. 11773–11778, doi:10.1029/JB086iB12p11773.
  3. a b c d e Eintrag zu Strontiumoxid in der GESTIS-Stoffdatenbank des IFA, abgerufen am 8. Januar 2021. (JavaScript erforderlich)
  4. David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet-Version: 2010), CRC Press / Taylor and Francis, Boca Raton FL, Index of Refraction of Inorganic Crystals, S. 10-248.
  5. H. Ost: Lehrbuch der Technischen Chemie, Verlag von Robert Oppenheim, Berlin, 1890, S. 369ff.