Strikt konvexe Räume werden im mathematischen Teilgebiet der Funktionalanalysis betrachtet. Es handelt sich um normierte Räume, deren Norm bestimmte geometrische Eigenschaften hat, die für die Optimierungstheorie wichtig sind.
Definitionen
Ist ein reeller normierter Raum, so sei die Einheitskugel, das heißt die Menge aller Elemente mit , sei der Dualraum, das heißt der Banachraum der stetigen linearen Funktionale mit der Dualraumnorm .
Ein reeller normierter Raum heißt strikt konvex, wenn er eine der folgenden untereinander äquivalenten Bedingungen erfüllt[1]:
- Ist für , so gibt es eine reelle Zahl mit .
- Ist für zwei verschiedene , so gilt für alle reellen Zahlen .
- Ist für zwei verschiedene , so gilt .
- Die Funktion ist strikt konvex.
- Jedes nimmt das Supremum auf in höchstens einem Punkt an.
Aus der zweiten Eigenschaft ergibt sich direkt, dass die Menge der Extremalpunkte von mit dem Rand der Einheitskugel zusammenfällt.
Aus der vierten Eigenschaft folgt die für die Optimierungstheorie wichtige Aussage, dass eine konvexe Menge in einem strikt konvexen Raum höchstens einen Vektor minimaler Länge hat.[2]
Beispiele
- Gleichmäßig konvexe Räume sind strikt konvex, insbesondere also prä-Hilberträume und die Lp-Räume für .
- ist nicht strikt konvex, denn ist und , so ist .
- Jeder endlichdimensionale strikt konvexe Raum ist gleichmäßig konvex. Es gibt strikt konvexe Räume, die nicht gleichmäßig konvex sind; diese müssen dann unendlichdimensional sein.[3] Siehe auch Renormierungssatz.
Glattheit
Die hier vorgestellte Eigenschaft Glattheit (engl.: smoothness) ist die zur strikten Konvexität duale Eigenschaft.
Es sei die Korrespondenz, die jedem die Menge derjenigen Funktionale mit zuordnet. Man nennt auch die Dualitätsabbildung.
Nach dem Satz von Hahn-Banach ist für alle . Man nennt einen normierten Raum glatt, wenn für jedes einelementig ist. Es gilt nun folgender Satz[4][5]:
- Sei ein normierter Raum.
- Ist strikt konvex, so ist glatt.
- Ist glatt, so ist strikt konvex.
Für reflexive Räume erhält man dann perfekte Dualität:
- Sei ein reflexiver Banachraum.
- ist genau dann strikt konvex, wenn glatt ist.
- ist genau dann glatt, wenn strikt konvex ist.
Da die Dualitätsabbildung für glatte Räume nur einelementige Bilder hat, kann man sie auch als Funktion betrachten. Man kann zeigen, dass diese Abbildung stetig ist, wenn man auf die Normtopologie und auf die schwach-*-Topologie betrachtet.[6]
Ein Renormierungssatz
In vielen Fällen kann man sich durch Übergang zu einer äquivalenten Norm die hier vorgestellten Normeigenschaften verschaffen, denn es gilt[7]:
- Jeder separable Banachraum hat eine äquivalente Norm, die sowohl strikt konvex als auch glatt ist.
Insbesondere kann man auf diese Weise nicht-reflexive, strikt konvexe Banachräume konstruieren. Damit hat man Beispiele für strikt konvexe, aber nicht gleichmäßig konvexe Banachräume, denn letztere sind nach einem Satz von Milman stets reflexiv.
Siehe auch
Einzelnachweise
- ↑ V. Barbu, Th. Precupanu: Convexity and Optimization in Banach Spaces, D. Reidel Publishing Company (1986), ISBN 90-277-1761-3, Satz 2.13
- ↑ Peter Kosmol: Optimierung und Approximation, Walter de Gruyter (2010), ISBN 3-110-21814-3, Folgerung aus Satz 3.17.1
- ↑ N. L. Carothers: A short course on Banach space theory, Cambridge University Press (2005), ISBN 0521603722, Kapitel 11, Seite 114
- ↑ V. Barbu, Th. Precupanu: Convexity and Optimization in Banach Spaces, D. Reidel Publishing Company (1986), ISBN 90-277-1761-3, Theorem 2.6
- ↑ N. L. Carothers: A short course on Banach space theory, Cambridge University Press (2005), ISBN 0521603722, Theorem 11.4
- ↑ V. Barbu, Th. Precupanu: Convexity and Optimization in Banach Spaces, D. Reidel Publishing Company (1986), ISBN 90-277-1761-3, Theorem 2.8
- ↑ Joram Lindenstrauss: Handbook of the geometry of Banach spaces Band 1, Elsevier (2001), ISBN 0444828427, Seite 33