Optimierungsalgorithmen, die auf der Monte-Carlo-Methode beruhen, tasten die untersuchte Funktion ab, indem sie zufällig von der aktuellen Lösung zu einer anderen Lösung springen, wobei die Funktionswerte sich um unterscheiden. Als Wahrscheinlichkeit für solch einen Versuchssprung wird meist das als definierte Metropolis-Kriterium gewählt, wobei der Parameter passend gewählt wird.
Das Prinzip von STUN ist, die langsame Dynamik von ungünstig geformten Energiefunktionen, die zum Beispiel in Spingläsern angetroffen werden[2], zu umgehen, indem solche Barrieren durchtunnelt werden. Dieses Ziel wird durch die Monte-Carlo-Abtastung[3] der transformierten Funktion erreicht, die dieser langsame Dynamik nicht unterliegt. Die Transformation ist in der "Standardform" definiert durch , wobei
der bislang niedrigste gefundene Funktionswert ist. Diese Transformation bewahrt die geometrischen Orte der Minima. Der Effekt solch einer Transformation ist in der Abbildung dargestellt.
Eine adaptive Variante des Verfahrens gestattet es, die Parameter des Verfahrens selber "online" zu schätzen und dadurch die Effizienz des Algorithmus zu verbessern[4].
↑K. Hamacher and W. Wenzel: The Scaling Behaviour of Stochastic Minimization Algorithms in a Perfect Funnel Landscape. Phys. Rev. E 59(1):938-941, 1999
↑W. Wenzel and K. Hamacher: A Stochastic tunneling approach for global minimization. Phys. Rev. Lett. 82(15):3003-3007, 1999
↑Metropolis, M. ; Rosenbluth, A. ; Rosenbluth, M. ; Teller, A. ; Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys 21 (1953), S. 1087–1092
↑K. Hamacher: Adaptation in Stochastic Tunneling Global Optimization of Complex Potential Energy Landscapes. Europhys. Lett. 74(6):944, 2006