Satz von Varignon

Der Satz von Varignon (auch Satz vom Mittenviereck) beschreibt in der Geometrie eine Eigenschaft von Vierecken. Namensgeber ist Pierre de Varignon (1654–1722).

Formulierung

Viereck mit konstruiertem Parallelogramm

Wenn man die Mitten benachbarter Seiten eines Vierecks verbindet, dann erhält man ein Parallelogramm.

Beweis

Voraussetzung

Behauptung

Das Viereck EFGH ist ein Parallelogramm.

Gang des Beweises

  1. Betrachte das Dreieck ABC. Nimmt man B als Streckzentrum einer zentrischen Streckung, werden A auf E und C auf F mit Streckfaktor ½ abgebildet. Nach den Abbildungseigenschaften der zentrischen Streckung – Bildgerade und Urgerade sind parallel – folgt AC ∥ EF.
  2. Ebenso zeigt man, dass AC ∥ GH, BD ∥ FG, und BD ∥ HE.
  3. Die Parallelität ist transitiv. Also ist EF ∥ HG und FG ∥ HE.

Die gegenüberliegenden Seiten des Vierecks EFGH sind parallel, was der Definition eines Parallelogramms entspricht.

Folgerungen

Umfang des Varignon-Parallelogramms

Der Umfang des Varignon-Parallelogramms ist genau so groß wie die Summe der Diagonalenlängen im Ursprungsviereck.

Fläche des Varignon-Parallelogramms

Die Fläche des Varignon-Parallelogramms ist halb so groß wie die Fläche des Ursprungsvierecks.

Siehe auch

Literatur