Satz von MengerDer Satz von Menger ist eines der klassischen Ergebnisse der Graphentheorie. Er wurde von 1927 von Karl Menger bewiesen und stellt einen Zusammenhang zwischen der Anzahl disjunkter Wege und der Größe von Trennern in einem Graphen her.[1] Insbesondere die globale Variante des Satzes trifft auch Aussagen über den K-Zusammenhang und den Kantenzusammenhang eines Graphen. Der Satz ist eine Verallgemeinerung des Satzes von König (1916), wonach in bipartiten Graphen die Paarungszahl der Knotenüberdeckungszahl entspricht. Er lässt sich wie der Satz von König auch auf unendliche Graphen übertragen (Ron Aharoni, Eli Berger 2009).[2] Lokale VersionIst ein ungerichteter Graph und sind und Teilmengen von , so ist die kleinste Mächtigkeit einer von trennenden Knotenmenge gleich der größten Mächtigkeit einer Menge disjunkter --Wege FächersatzNimmt man die Menge als einelementig an, so folgt sofort der sogenannte Fächersatz: Ist eine Teilmenge von und ein Element von , so ist die kleinste Mächtigkeit einer von trennenden Teilmenge gleich der größten Mächtigkeit eines --Fächers. Globale VersionMit der Definition des Kantenzusammenhangs und des k-Zusammenhangs folgt dann die globale Version:
Alternative FormulierungGelegentlich findet man den Satz in der Literatur auch in einer der folgenden Formulierungen: Sind und zwei verschiedene Knoten von , so gilt:
VerwendungDer Satz von Menger wird häufig als alternative Definition der Begriffe Kantenzusammenhang sowie k-Zusammenhang genutzt. Des Weiteren gibt es eine Verallgemeinerung des Satzes, das Max-Flow-Min-Cut-Theorem, das eine zentrale Rolle in der Theorie der Flüsse und Schnitte in Netzwerken spielt. Siehe auchLiteratur
Einzelnachweise
|