Hat man auf der Zahlengeraden zwei Brüche mit positiven Nennern und bildet man dazu einen dritten Bruch, dessen Zähler gleich der Summe der Zähler und dessen Nenner gleich der Summe der Nenner der beiden gegebenen Brüche ist, so liegt dieser dritte Bruch stets zwischen den beiden gegebenen Brüchen.
Formelhaft ausgedrückt:
Für vier reelle Zahlen mit folgen aus der Ungleichung stets die Ungleichungen .[4]
Entsprechendes gilt auch, wenn anstelle des Kleinerzeichens das Kleiner-gleich-Zeichen vorliegt.
Geometrisch lässt sich die Regel folgendermaßen interpretieren:
Die Steigung der Strecke liegt stets zwischen der Steigung der Strecke und der Steigung der Strecke (Figur 1).[5][6]
Beispiel
Für gilt und daher
.
Erläuterungen und Anmerkungen
Man nennt den oben auftretenden mittleren Bruch die Mediante der beiden Ausgangsbrüche und .[3]
Beginnend mit den beiden Brüchen und gelangt man durch sukzessive Bildung von Medianten zu einer typischen Farey-Folge.[3]
Wie im Lexikon bedeutender Mathematiker ausdrücklich hervorgehoben wird, hat Nicolas Chuquet die Regel der Mittelzahlen als eigene Entdeckung beansprucht.[1]
↑ abSiegfried Gottwald et al. (Hrsg.): Lexikon bedeutender Mathematiker. 1990, S. 104
↑Howard Eves: An Introduction to the History of Mathematics. 1983, S. 214
↑ abcGuido Walz [Red.]: Lexikon der Mathematik. Dritter Band. 2001, S. 397
↑In EvesIntroduction to the History of Mathematics wird die Positivität der vier Zahlen vorausgesetzt, während im Lexikon bedeutender Mathematiker hierzu keine Voraussetzungen genannt sind. Jedenfalls muss der mögliche Fall ausgeschlossen werden. Unproblematisch ist der Sachverhalt dann, wenn als Konvention angenommen wird, dass das Vorzeichen eines Bruchs grundsätzlich Bestandteil des Zählers ist, also stets ein positiver Nenner vorliegt.