Nader MasmoudiNader Masmoudi (* 1974 in Sfax) ist ein tunesischer Mathematiker. 1992 erhielt er eine Goldmedaille auf der Internationalen Mathematikolympiade (als erster Afrikaner oder Araber überhaupt).[1] Er studierte in Tunis und danach an der École normale supérieure in Paris mit dem Diplomabschluss 1996; 1999 wurde er an der Universität Paris-Dauphine bei Pierre-Louis Lions promoviert (Problemes asymptotiques en mecanique des fluides).[2] Danach ging er an das Courant Institute der New York University, wo er 2008 Professor wurde. Masmoudi befasst sich insbesondere mit nichtlinearen partiellen Differentialgleichungen der Hydrodynamik (Eulergleichung, Navier-Stokes-Gleichung, Oberflächenwellen, Schwerewellen, Kapillarwellen, akustischen Wellen, Grenzschichtgleichungen und qualitatives Verhalten der Grenzschichten, Couette-Strömung, nicht-Newtonsche Flüssigkeiten, nichtlineare Schrödingergleichungen für Wellen und andere dispersive Systeme u. a.), hydrodynamischer Grenzwert der Boltzmann-Gleichung, Grenzverhalten zur Inkompressibilität, Chemotaxis (Keller-Segel-Gleichungen), der Ginsburg-Landau-Gleichung, Landau-Dämpfung, Verhalten von Mischungen, allgemeines Langzeitverhalten semilinearer Systeme partieller Differentialgleichungen und Stabilitätsproblemen der Hydrodynamik. Mit seinem Post-Doktoranden Jacob Bedrossian bewies er 2013 streng die Stabilität der Scherströmung nach Couette für die zweidimensionalen Euler-Gleichungen, also im nichtlinearen Fall. Die Stabilität in linearer Näherung wurde schon durch Lord Kelvin 1887 und genauer durch William McFadden Orr 1907 bewiesen. Ähnliche Stabilitätsresultate erhielt er auch im viskosen Fall für die Grenzschichtbildung nach Prandtl bei den zweidimensionalen Navier-Stokes-Gleichungen (die lineare Theorie ist hier nach Orr und Arnold Sommerfeld benannt: Orr-Sommerfeld-Gleichungen).[3] Dabei baute er auf den Arbeiten zu einem ähnlichen Problem durch Cédric Villani auf, der die Landau-Dämpfung behandelte, die Dämpfung von Plasmawellen, die sich in streng mathematischer Behandlung auch aus nicht-viskosen Phänomenen (starke Glattheits-Eigenschaften und Mischung, manchmal nichtviskose Dämpfung genannt (englisch: inviscid damping), technisch sogenannte Gevrey-Regularität) ergaben. Mögliche Instabilitäten ergeben sich auch durch nichtlineare Resonanzen zwischen verschiedenen Wellen im Plasma (nichtlineares Aufschaukeln mit den „Echos“ der Wellen) und müssen für einen Stabilitätsbeweis „mathematisch kontrolliert“ werden. Das Verhalten von Plasmen und nicht-viskosen, durch die Eulergleichung beschriebenen Flüssigkeiten ist ähnlich.[4] Für 2017 erhielt er den Fermat-Preis. Für 2018 war er eingeladener Sprecher auf dem Internationalen Mathematikerkongress in Rio de Janeiro. 2021 wurde Masmoudi in die American Academy of Arts and Sciences gewählt. 2022 wurde ihm der Internationale König-Faisal-Preis zugesprochen gemeinsam mit Martin Hairer.[5] Schriften (Auswahl)
Weblinks
Einzelnachweise
|