Von 1979 bis 1982 war Martin Zenke wissenschaftlicher Mitarbeiter (Doktorand) am Deutschen Krebsforschungszentrum (DKFZ) in Heidelberg am Institut für Virusforschung in der Abteilung DNA Tumorviren von Gerhard Sauer.[1] Er promovierte 1982 an der Rubrecht-Karls-Universität Heidelberg zum Dr. rer. nat. mit dem Thema Transkription von SV40 Chromatin.[2]
Von 1982 bis 1985 arbeitete Martin Zenke als Postdoc bei Pierre Chambon an der Université Louis Pasteur und am Laboratoire de Genetique Moleculaire des Eucaryotes (LGME) in Straßburg.[3][4][5] 1985 wechselte er an das Europäische Laboratorium für Molekularbiologie (EMBL) in Heidelberg und arbeitete bis 1988 in der Abteilung von Thomas Graf und Hartmut Beug.[6][7]
Von 1995 bis 2003 war Martin Zenke Abteilungsleiter am Max-Delbrück-Centrum für Molekulare Medizin (MDC) in Berlin.[14][15] 2003 folgte er dem Ruf als Gründungsdirektor des Instituts für Biomedizinische Technologien, Lehrstuhl für Zellbiologie, Medizinische Fakultät der RWTH Aachen.[16][17] Seit 2008 ist Martin Zenke Mitglied der Zentralen Ethik-Kommission für Stammzellenforschung (ZES)[18] in Berlin und von 2011 bis 2014 war er geschäftsführender Direktor des Helmholtz-Instituts für Biomedizinische Technik (Amtszeit von 3 Jahren) an der RWTH Aachen.
Forschung
1979–1986: SV40 Enhancer und SV40 Chromatin
In den 1980er Jahren konzentrierte sich die Forschung von Martin Zenke auf die Gentranskription und Chromatin.[1] 1986 zeigten er und seine Kollegen, dass Transkriptions-Enhancer eine modulare Struktur aufweisen und aus einzelnen Elementen zusammengesetzt sind, die für sich alleine relativ schwach sind, aber synergetisch wirken und dadurch Enhancer-Aktivität aufbauen.[3][4][5] Heutzutage ist dies Lehrbuchwissen, aber in den 1980er Jahren war die ursprüngliche Annahme, dass Enhancer die Transkription durch eine einzigartige und besonders starke Enhancer-Sequenz und einen entsprechenden Enhancer-Faktor erzeugen. Martin Zenkes bahnbrechende Arbeit wird in Lewins Genes IX,[19] dem Standard-Lehrbuch der Molekularbiologie, zitiert und dargestellt.
1986–1998: Das erbA-Onkogen und die Differenzierung roter Blutzellen
1988 begann Martin Zenke mit der Arbeit an retroviralen Onkogenen, insbesondere an den Onkogenen v-erbA und v-rel.[7][9][10][13] Er fand heraus, dass im v-erbA-Onkogen die Funktion des c-erbA/Schilddrüsenhormonrezeptors, die Transkription zu aktivieren, verloren gegangen ist, und v-erbA als dominanter negativer Transkriptionsfaktor wirkt.[7][9][10] Diese Arbeit war die erste Beschreibung, dass onkogene Aktivität durch einen Funktionsverlust entsteht.[20][21] Diese Entdeckung war überraschend, da bis dahin angenommen wurde, dass onkogene Aktivität auf aktivierende Mutationen zurückzuführen ist.
Die erbA-Arbeit veranlasste Martin Zenke, die Differenzierung roter Blutzellen (Erythrozyten) zu untersuchen,[11][12][14] wobei er sich auf die gerade entdeckten GATA-Transkriptionsfaktoren konzentrierte.[11][12] Er fand heraus, dass GATA-1 die Entwicklung roter Blutzellen fördert,[12] während GATA-2 die Entwicklung roter Blutzellen blockiert und die Bildung von Erythrozytenvorläuferzellen stimuliert.[11] Diese Ergebnisse waren die ersten, die eine GATA-2-Funktion in der frühen Entwicklung von Blutzellen zeigten.
1995–heute: Stammzellen und antigenpräsentierende dendritische Zellen
Anfang der 1990er Jahre begann Martin Zenke, aufbauend auf Untersuchungen zum v-rel-Onkogen,[13] an Antigen-präsentierenden dendritischen Zellen (dendritic cells, DC) zu arbeiten. DC sind spezialisierte Immunzellen und wichtig für Immunität und Immuntoleranz. Die DC Biologie war zu dieser Zeit wenig verstanden und Martin Zenke war einer der ersten, der Genexpressionsanalysen mit DNA Microarrays für das Gen-Mining anwendete. Diese Arbeiten führten zur Entdeckung des Transkriptionsfaktors Id2 bei der DC Entwicklung.[15] Die Id2 Gendatensätze erhielten die Zugangsnummern 1 und 2 (E-MEXP-1 und E-MEXP-2) in der ArrayExpress Datenbank,[22] einer der beiden großen Datenbanken für Genomdaten, die inzwischen mehrere Millionen Einträge enthält.
Die Arbeiten zu DC werden hauptsächlich im Maussystem durchgeführt[23][24] mit dem Ziel, Genschaltkreise der DC Entwicklung und Funktion zu identifizieren. Dazu werden RNA-Seq, ChIP-seq, ATAC-seq, Chromosom-Konformationsanalysen (4C) und CRISPR/Cas9 Gen Editierung verwendet.[25] Neuerdings werden diese Studien im menschlichen System auch unter Verwendung von induzierten pluripotenten Stammzellen (iPS-Zellen) durchgeführt.
2005–heute: Pluripotente Stammzellen und Krankheitsmodellierung
Blutbildende Stammzellen sind seit vielen Jahren das Hauptinteresse von Martin Zenke. In den 2005er Jahren erweiterte er sein Interesse auf pluripotente Stammzellen, wie embryonale Stammzellen (ES-Zellen) und die kürzlich entdeckten induzierten pluripotenten Stammzellen (iPS-Zellen).[26][27][28]
Ein besonderer Schwerpunkt liegt auf krankheits- und patientenspezifischen iPS-Zellen für die Krankheitsmodellierung und das Wirkstoffscreening, insbesondere des blutbildenden Systems.[28][29] Diese Arbeiten umfassen auch die Entwicklung von Tiermodellen zum Studium von Erkrankungen und die Laborautomatisierung für die Zellproduktion.
Martin Zenke arbeitete auch an der Technologieentwicklung: Automatische DNA-Sequenzierung[30] und Gentransfer in Zellen.[31][32]
↑ abM Zenke, T Grundström, H Matthes, M Wintzerith, C Schatz, A Wildeman, P Chambon: Multiple sequence motifs are involved in SV40 enhancer function. In: The EMBO Journal. Band5, Nr.2, Februar 1986, S.387–97, doi:10.1002/j.1460-2075.1986.tb04224.x, PMID 3011406, PMC 1166744 (freier Volltext).
↑ abAG Wildeman, M Zenke, C Schatz, M Wintzerith, T Grundström, H Matthes, K Takahashi, P Chambon: Specific protein binding to the simian virus 40 enhancer in vitro. In: Molecular and Cellular Biology. Band6, Nr.6, Juni 1986, S.2098–2105, doi:10.1128/mcb.6.6.2098, PMID 3023918, PMC 367750 (freier Volltext).
↑ abI Davidson, C Fromental, P Augereau, A Wildeman, M Zenke, P Chambon: Cell-type specific protein binding to the enhancer of simian virus 40 in nuclear extracts. In: Nature. Band323, Nr.6088, 9. Oktober 1986, S.544–8, doi:10.1038/323544a0, PMID 3020434.
↑ abcM Zenke, P Kahn, C Disela, B Vennström, A Leutz, K Keegan, MJ Hayman, HR Choi, N Yew, JD Engel: v-erbA specifically suppresses transcription of the avian erythrocyte anion transporter (band 3) gene. In: Cell. Band52, Nr.1, 15. Januar 1988, S.107–19, doi:10.1016/0092-8674(88)90535-1, PMID 2830979.
↑ abcM Zenke, A Muñoz, J Sap, B Vennström, H Beug: v-erbA oncogene activation entails the loss of hormone-dependent regulator activity of c-erbA. In: Cell. Band61, Nr.6, 15. Juni 1990, S.1035–49, doi:10.1016/0092-8674(90)90068-P, PMID 1972036.
↑ abcC Disela, C Glineur, T Bugge, J Sap, G Stengl, J Dodgson, H Stunnenberg, H Beug, M Zenke: v-erbA overexpression is required to extinguish c-erbA function in erythroid cell differentiation and regulation of the erbA target gene CAII. In: Genes & Development. Band5, Nr.11, November 1991, S.2033–2047, doi:10.1101/gad.5.11.2033, PMID 1682217.
↑ abcdK Briegel, KC Lim, C Plank, H Beug, JD Engel, M Zenke: Ectopic expression of a conditional GATA-2/estrogen receptor chimera arrests erythroid differentiation in a hormone-dependent manner. In: Genes & Development. Band7, Nr.6, Juni 1993, S.1097–1109, doi:10.1101/gad.7.6.1097, PMID 8504932.
↑ abcdK Briegel, P Bartunek, G Stengl, KC Lim, H Beug, JD Engel, M Zenke: Regulation and function of transcription factor GATA-1 during red blood cell differentiation. In: Development. Band122, Nr.12, 1. Dezember 1996, S.3839–3850, doi:10.1242/dev.122.12.3839, PMID 9012505.
↑ abcG Boehmelt, J Madruga, P Dörfler, K Briegel, H Schwarz, PJ Enrietto, M Zenke: Dendritic cell progenitor is transformed by a conditional v-Rel estrogen receptor fusion protein v-RelER. In: Cell. Band80, Nr.2, 27. Januar 1995, S.341–52, doi:10.1016/0092-8674(95)90417-4, PMID 7834754.
↑ abB Panzenböck, P Bartunek, MY Mapara, M Zenke: Growth and Differentiation of Human Stem Cell Factor/Erythropoietin-Dependent Erythroid Progenitor Cells In Vitro. In: Blood. Band92, Nr.10, 15. November 1998, S.3658–3668, doi:10.1182/blood.V92.10.3658, PMID 9808559.
↑ abC Hacker, RD Kirsch, XS Ju, T Hieronymus, TC Gust, C Kuhl, T Jorgas, SM Kurz, S Rose-John, Y Yokota, M Zenke: Transcriptional profiling identifies Id2 function in dendritic cell development. In: Nature Immunology. Band4, Nr.4, April 2003, S.380–6, doi:10.1038/ni903, PMID 12598895.
↑Kristin Seré, Jea-Hyun Baek, Julia Ober-Blöbaum, Gerhard Müller-Newen, Frank Tacke, Yoshifumi Yokota, Martin Zenke, Thomas Hieronymus: Two Distinct Types of Langerhans Cells Populate the Skin during Steady State and Inflammation. In: Immunity. 37. Jahrgang, Nr.5, November 2012, S.905–916, doi:10.1016/j.immuni.2012.07.019, PMID 23159228.
↑Nikolaus Romani, Christoph Tripp, Patrizia Stoitzner: Langerhans Cells Come in Waves. In: Immunity. 37. Jahrgang, Nr.5, November 2012, S.766–768, doi:10.1016/j.immuni.2012.10.013, PMID 23159223, PMC 4285563 (freier Volltext).
↑Qiong Lin, Heike Chauvistré, Ivan G. Costa, Eduardo G. Gusmao, Saskia Mitzka, Sonja Hänzelmann, Bianka Baying, Theresa Klisch, Richard Moriggl, Benoit Hennuy, Hubert Smeets, Kurt Hoffmann, Vladimir Benes, Kristin Seré, Martin Zenke: Epigenetic program and transcription factor circuitry of dendritic cell development. In: Nucleic Acids Research. 43. Jahrgang, Nr.20, 17. Oktober 2015, S.9680–9693, doi:10.1093/nar/gkv1056, PMID 26476451, PMC 4787753 (freier Volltext).
↑David Ruau, Roberto Ensenat‐Waser, Timo C. Dinger, Duttu S. Vallabhapurapu, Alexandra Rolletschek, Christine Hacker, Thomas Hieronymus, Anna M. Wobus, Albrecht M. Müller, Martin Zenke: Pluripotency Associated Genes Are Reactivated by Chromatin‐Modifying Agents in Neurosphere Cells. In: Stem Cells. 26. Jahrgang, Nr.4, April 2008, S.920–926, doi:10.1634/stemcells.2007-0649, PMID 18203677.
↑Jeong Beom Kim, Holm Zaehres, Guangming Wu, Luca Gentile, Kinarm Ko, Vittorio Sebastiano, Marcos J. Araúzo-Bravo, David Ruau, Dong Wook Han, Martin Zenke, Hans R. Schöler: Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. In: Nature. 454. Jahrgang, Nr.7204, Juli 2008, S.646–650, doi:10.1038/nature07061, PMID 18594515.
↑ abMarcelo A. S. Toledo, Malrun Gatz, Stephanie Sontag, Karoline V. Gleixner, Gregor Eisenwort, Kristina Feldberg, Ahmed E. I. Hamouda, Frederick Kluge, Riccardo Guareschi, Giulia Rossetti, Antonio S. Sechi, Olli M. J. Dufva, Satu M. Mustjoki, Angela Maurer, Herdit M. Schüler, Roman Goetzke, Till Braunschweig, Anne Kaiser, Jens Panse, Mohamad Jawhar, Andreas Reiter, Frank Hilberg, Peter Ettmayer, Wolfgang Wagner, Steffen Koschmieder, Tim H. Brümmendorf, Peter Valent, Nicolas Chatain, Martin Zenke: Nintedanib targets KIT D816V neoplastic cells derived from induced pluripotent stem cells of systemic mastocytosis. In: Blood. 137. Jahrgang, Nr.15, 15. April 2021, S.2070–2084, doi:10.1182/blood.2019004509, PMID 33512435.
↑Adrienne Dorrance: "Mast"ering drug discovery with iPSCs. In: Blood. 137. Jahrgang, Nr.15, 15. April 2021, S.1993–1994, doi:10.1182/blood.2020010456, PMID 33856443.
↑Wilhelm Ansorge, Brian Sproat, Josef Stegemann, Christian Schwager, Martin Zenke: Automated DNA sequencing: ultrasensitive detection of fluorescent bands during electrophoresis. In: Nucleic Acids Research. 15. Jahrgang, Nr.11, 1987, S.4593–4602, doi:10.1093/nar/15.11.4593, PMID 3588303, PMC 340882 (freier Volltext).
↑M. Zenke, P. Steinlein, E. Wagner, M. Cotten, H. Beug, M. L. Birnstiel: Receptor-mediated endocytosis of transferrin-polycation conjugates: an efficient way to introduce DNA into hematopoietic cells. In: Proceedings of the National Academy of Sciences. 87. Jahrgang, Nr.10, 1. Mai 1990, S.3655–3659, doi:10.1073/pnas.87.10.3655, PMID 2339110, PMC 53961 (freier Volltext).
↑Sandra S. Diebold, Margaretha Kursa, Ernst Wagner, Matt Cotten, Martin Zenke: Mannose Polyethylenimine Conjugates for Targeted DNA Delivery into Dendritic Cells. In: Journal of Biological Chemistry. 274. Jahrgang, Nr.27, Juli 1999, S.19087–19094, doi:10.1074/jbc.274.27.19087, PMID 10383411.