Die bekannteste Anwendung ist die halbklassische Beschreibung eines Paramagneten in einem äußeren Magnetfeld. Dazu wird der Langevin-Parameter eingeführt:
Für die Magnetisierung eines Paramagneten ergibt sich dann:
steht dabei für die Stoffmenge und für das magnetische Moment der einzelnen Spins des Paramagneten. Eine weitere, quantenmechanische Beschreibung des Paramagnetismus ist durch die Brillouin-Funktion gegeben.
Reihenentwicklungen
Für alle reellen Werte x konvergent ist diese Summenreihe:
Beispielsweise gilt für die diskrete Cauchy-Verteilung jene Summenreihe:
Somit ist die unendliche Summe der Kehrwerte von den Nachfolgern der Quadratzahlen elementar.
Und folgender Grenzwert gilt:
Dieser Wert ist beim sogenannten Basler Problem die Lösung.
Da die Langevin-Funktion keine geschlossen darstellbare Umkehrfunktion hat, gibt es verschiedene Näherungen. Die invertierte Langevin-Funktion wird mit einer Minus-Eins von Spitzklammern umkleidet in Exponentenstellung hinter dem L dargestellt. Diese Umkehrfunktion ist ähnlich wie die Lambertsche W-Funktion nicht elementar darstellbar.
Eine verbreitete Näherung, die im Intervall gilt, wurde von A. Cohen veröffentlicht:[2]
Der größte relative Fehler dieser Näherung ist 4,9 % um . Es existieren weitere Näherungen, die weitaus kleinere relative Fehler haben.[3][4]
Die Maclaurinsche Reihe der invertierten Langevin-Funktion lautet wie folgt[5] und hat den Konvergenzradius 1: