Karps 21 NP-vollständige ProblemeKarps 21 NP-vollständige Probleme ist eine in der Komplexitätstheorie gebräuchliche Menge NP-vollständiger Rechenprobleme. GeschichteEines der bedeutendsten Resultate der Komplexitätstheorie ist der von Stephen Cook im Jahr 1971 erbrachte Nachweis, dass das Erfüllbarkeitsproblem der Aussagenlogik (meist nur kurz SAT genannt) NP-vollständig ist.[1] Im Jahr 1972 griff Richard Karp diese Idee auf und zeigte die NP-Vollständigkeit ebenfalls für 21 weitere kombinatorische und graphentheoretische Probleme, die sich hartnäckig einer effizienten algorithmischen Lösbarkeit entzogen. BedeutungIndem er aufzeigte, dass eine große Anzahl bedeutender Probleme NP-vollständig sind, motivierte Karp die weitere Erforschung der Klasse NP, der Theorie der NP-Vollständigkeit sowie der Fragestellung, ob die Klassen P und NP identisch sind oder sich unterscheiden (P-NP-Problem). Letzteres zählt heute zu den wichtigsten offenen mathematischen Fragestellungen. Unter anderem zählt es zu den sieben Millennium-Problemen des Clay Mathematics Institute, für deren Lösung Preisgelder von jeweils einer Million US-Dollar ausgelobt wurden. Liste der ProblemeDer folgende Baum zeigt Karps 21 Probleme, einschließlich der zugehörigen Reduktion, die er zum Nachweis ihrer NP-Vollständigkeit nutzte. So wurde etwa die NP-Vollständigkeit des Rucksackproblems durch Reduzierung des Problems der exakten Überdeckung darauf gezeigt.
Literatur
Einzelnachweise
|