GießharztransformatorAls Gießharztransformator wird ein Leistungstransformator für die Energietechnik bezeichnet, dessen Isolierung der Oberspannungswicklungen aus Gießharz besteht und in welchem kein Transformatorenöl eingesetzt wird. Er wird deswegen oft auch als Trockentransformator bezeichnet, wobei dieser Begriff streng genommen alle Transformatoren einschließt, die keine flüssigen Isolierstoffe enthalten, wie z. B. auch rein aramidisolierte Transformatoren. Unterschiede zum flüssigkeitsgefüllten TransformatorBei flüssigkeitsgefüllten Transformatoren sorgt das Transformatorenöl für die elektrische Isolierung und die Abführung der Verlustwärme. Beim Gießharztransformator ist die Oberspannungswicklung in Epoxidharz eingegossen, in der Unterspannungswicklung kommen andere feste Isolierstoffe wie Prepreg zum Einsatz. Die Isolierung der Spulen zueinander und zum Kern wird durch ausreichend große Luftabstände gewährleistet. Ein vertikaler Luftstrom entlang den Spulenoberflächen und in Kühlkanälen in den Spulen sorgt für die Abführung der Verlustwärme. Aufgrund von Konvektion entsteht der Luftstrom von selbst (Kühlungsart AN – Air Natural) oder er wird mit Lüftern zusätzlich verstärkt (Kühlungsart AF – Air Forced).[1] Mit dem Transformatorenöl entfällt beim Gießharztransformator auch die damit verbundene Brand- und Grundwassergefahr. Folglich werden Gießharztransformatoren besonders dort eingesetzt, wo wegen der räumlichen Nähe zu Personen oder Sachwerten ölgefüllte Transformatoren nicht oder nur mit erheblichen Maßnahmen zum Brandschutz, wie z. B. Brandschutzwänden, aufgestellt werden können.[2] Auch entfallen Ölauffanggruben zum Grundwasserschutz. Mit Gießharztransformatoren ist deswegen auch die Möglichkeit einer einfachen Ortsveränderung gegeben. Weiterhin sind sie weitgehend wartungsfrei, da z. B. keine Undichtigkeiten wie bei flüssigkeitsgefüllten Transformatoren auftreten können und die Problematik der Hydrolyse des Transformatorenöles und dessen eventuell notwendige Aufbereitung entfällt.[2][3] Andererseits verfügen die beim Gießharztransformator eingesetzten Isoliermedien im Vergleich zu Transformatorenöl über eine geringere Durchschlagsfestigkeit. Auch kann durch die Luftkühlung die Verlustwärme schlechter abgeführt werden als durch Flüssigkeitskühlung.[1] Deswegen sind Gießharztransformatoren in der Regel auf einen Leistungsbereich von 50 kVA bis 40 MVA[4] und auf Betriebsspannungen bis 36 kV[3] beschränkt. Sie werden nur im Bereich des Mittelspannungsnetzes eingesetzt, vorwiegend als Verteiltransformatoren. Weiterhin müssen Gießharztransformatoren mit größeren Abständen zwischen den spannungsführenden Teilen ausgelegt werden, um dem geringeren Isoliervermögen Rechnung zu tragen. Die schlechteren Kühleigenschaften müssen durch niedrigere Verluste oder eine größere Spulenoberfläche zur Wärmeabgabe ausgeglichen werden. Dies führt zu größeren Abmessungen und höherem Materialeinsatz im Vergleich zu einem Öltransformator gleicher Leistung und Betriebsspannung. Außerdem ist die Spulenoberfläche von Gießharztransformatoren nicht potentialfrei. Trockentransformatoren sind deswegen im Unterschied zu flüssigkeitsgefüllten Transformatoren, die von einem schützenden, geerdeten Kessel umgeben sind, grundsätzlich anfälliger gegen Feuchte und Verschmutzung, daher ohne Gehäuse nicht für Freiluftaufstellung geeignet und auch nicht berührungssicher. Da die Isolation teilweise durch die umgebende Luft gewährleistet wird, müssen Gießharztransformatoren für große Aufstellungshöhen (nach Norm > 1000 m) mit größeren Abständen ausgelegt werden, um die mit dem Druck abnehmende Durchschlagsfestigkeit der Luft auszugleichen. Während Isolationsfehler in flüssigen Isoliermedien durch Fortströmen der Zersetzungsprodukte in einem gewissen Maß von selbst beseitigt werden, fehlt dieser Selbstheilungsmechanismus in einer Feststoffisolation. Entladungen in der Luftstrecke eines Gießharztransformators bleiben dagegen aber folgenlos, solange die Feststoffisolation nicht beschädigt wird. AufbauKernDer Kern wird wie bei flüssigkeitsgefüllten Transformatoren häufig als Dreischenkelkern aus beidseitig isolierten Elektroblechen ausgeführt. Allerdings ist beim Gießharztrafo noch eine Lackierung notwendig, um den Korrosionsschutz zu gewährleisten, da der Kern nicht von Öl umgeben ist. OberspannungswicklungenAls Leitermaterial wird in den Oberspannungswicklungen Kupfer, oft aber auch Aluminium eingesetzt. Der thermische Ausdehnungskoeffizient von Aluminium ist höher als der von Kupfer und liegt damit näher an dem von Gießharz. So vermindert ein Aluminiumleiter die inneren mechanischen Spannungen in der Spule infolge von Temperaturschwankungen und damit die Gefahr von Rissen in der Isolierung. Die Wicklung kann entweder als Drahtwicklung oder als Bandwicklung mit Kunststofffolie als Lagenisolation zwischen den einzelnen Windungen ausgeführt werden. Die Spule wird nach dem Wickeln unter Vakuum mit Epoxidharz vergossen. Dies gewährleistet eine ausreichende elektrische und mechanische Festigkeit der Wicklung und einen Schutz vor Verschmutzung und Feuchte. Der Verguss darf keine Hohlräume oder Blasen aufweisen, die sonst zu Teilentladungen führen und so langfristig den Spannungsdurchschlag der Isolation bewirken können. Das Gießharz dient dabei primär der gegenseitigen Isolierung der elektrischen Leiter innerhalb der Spule. Zur Unterspannungsspule und zum Kern hin existiert noch eine Luftstrecke. Infolge der unterschiedlichen relativen Permittivität von Luft () und Gießharz () wird das elektrische Feld in die Luft „gedrängt“, es wird also auf diesen Isolierstrecken nur ein geringer Teil der Spannung im Gießharz abgebaut. Deswegen dürfen die Spulen im Betrieb auch nicht auf der Oberfläche berührt werden. Die Isolierung entspricht meist der Isolierstoffklasse F oder H. UnterspannungswicklungenAluminium- oder Kupferband dient als Leiter in der Unterspannungswicklung, als Lagenisolation wird meist Prepreg eingesetzt. Dieses isoliert die Windungen nicht nur elektrisch voneinander, sondern verklebt sie auch miteinander und stellt so eine ausreichende mechanische Festigkeit im Falle eines Kurzschlusses sicher. Die Isolierstoffklasse ist auch hier meist F oder H. Anschlusselemente und ZubehörNeben Schienen und Rohren als Verbindungs- und Anschlusselemente besteht das weitere Zubehör aus Temperatursensoren zum Schutz des Transformators gegen Überlastung[5] und, falls benötigt, aus Rollen zum Transport und Überspannungsableitern. Umgebungs-, Klima- und BrandklassenDie Prüfung von Trockentransformatoren nach DIN EN 60076-11 unterscheidet sich nicht grundsätzlich von der von flüssigkeitsgefüllten Transformatoren. Allerdings werden Trockentransformatoren zusätzlich in Umgebungs-, Klima- und Brandklassen eingeteilt, die auf Kundenwunsch durch eine Sonderprüfung, d. h. an einem Transformator stellvertretend für eine Baureihe, nachzuweisen sind. Umgebungsklassen E0 – E3Die Umgebungsklasse gibt Auskunft darüber, bis zu welchem Grad der Transformator auch bei widrigen Umgebungsbedingungen wie hoher Luftfeuchte, Kondensation und Verschmutzung einsatzfähig ist. Es gilt für:
Klimaklassen C1 und C2Diese Klimaklasse legt fest, bei welchen Minimaltemperaturen der Trafo transportiert, gelagert und betrieben werden kann. Durch Temperaturwechsel (ausgeschalteter Trafo: Umgebungstemperatur, Trafo bei Nennbetrieb: üblicherweise > 100 °C) kann die Gießharzisolierung bei falscher Bemessung Risse infolge der unterschiedlichen Ausdehnungskoeffizienten von Leitermaterial und Gießharz bekommen. Es gilt dann für
Brandklassen F0 und F1Die Brandklasse gibt über die Brandlast bei einem Feuer in der Umgebung des Transformators und die Entwicklung von giftigen und sichtbehindernden Rauchgasen Aufschluss.
AnwendungsbereicheDie klassischen Einsatzgebiete des Gießharztransformators liegen dort, wo ein großer, räumlich konzentrierter Leistungsbedarf in der Nähe von Personen oder hohen Sachwerten besteht und/oder eine Wartung unvorteilhaft oder sogar unmöglich ist.[6] Die Gießharztransformatoren können dort aufgrund ihrer geringen Brandlast nahe am Verbraucher installiert werden, sodass man die verlustarme Mittelspannung nahe zum Verbraucher heranführen kann und die mit höheren Verlusten behafteten Niederspannungsleitungen kürzer ausfallen können.[7] Dies ist in Gebäudekomplexen wie Warenhäusern, Bürogebäuden, Krankenhäusern und Flughäfen der Fall, ebenso bei Industrieanlagen, U- und S-Bahnen. Als Stromrichtertrafo kommen sie auf Bohrinseln, Schiffen, Kränen, in Walzwerken und Papierfabriken und im Bergbau zum Einsatz. Mit der Verbreitung der Windenergie hat sich ein neuer Anwendungsbereich eröffnet: In Offshore- und Onshore-Windkraftanlagen wird häufig ein Gießharztransformator in der Gondel installiert, um die Generatorspannung auf die Netzspannung herauf zu transformieren.[8] Literatur
WeblinksCommons: Cast resin transformers – Sammlung von Bildern, Videos und Audiodateien
Einzelnachweise
|