Gesetz des iterierten LogarithmusAls Gesetz des iterierten Logarithmus werden mehrere Grenzwertsätze der Wahrscheinlichkeitstheorie bezeichnet. Sie treffen Aussagen über das asymptotische Verhalten von Summen von Zufallsvariablen beziehungsweise von stochastischen Prozessen. Das Gesetz des iterierten Logarithmus für Summen von ZufallsvariablenSei eine Folge unabhängiger, identisch verteilter (i.i.d.) Zufallsvariablen mit Erwartungswert 0 und Varianz 1. Dann gilt und Das Gesetz des iterierten Logarithmus komplettiert als wichtige Aussage über das asymptotische Verhalten von Summen von Zufallsvariablen das Gesetz der großen Zahlen und den zentralen Grenzwertsatz. Erste Beweise in einfachen Fällen stammen von Chintschin (1924) und Kolmogorow (1929), der Beweis für den hier angeführten allgemeinen Fall wurde 1941 von Philip Hartman und Aurel Wintner erbracht. Daher wird die Aussage auch als Satz von Hartman-Wintner bezeichnet. Ein Beweis ist beispielsweise durch den Skorochodschen Einbettungssatz in Kombination mit der Aussage für den Wiener-Prozess möglich. Die Gesetze des iterierten Logarithmus für den Wiener-ProzessIm Folgenden sei stets ein Standard-Wiener-Prozess auf einem geeigneten Wahrscheinlichkeitsraum , d. h. für jedes ist durch eine Funktion gegeben. Der Verlauf dieser Funktion ist von abhängig, also zufällig. Darüber hinaus wächst die Varianz, also das Maß für die "Unbestimmtheit" von W, mit wachsendem t ins Unendliche. Umso erstaunlicher erscheint es, dass sich mit Hilfe der Gesetze des iterierten Logarithmus so präzise Aussagen über den Wiener-Prozess treffen lassen: Das erste GesetzDas erste Gesetz des iterierten Logarithmus besagt:
Dabei bezeichnet limsup den limes superior und loglog ist der zweimal hintereinander ausgeführte (iterierte) natürliche Logarithmus. Das Gesetz lässt sich wie folgt deuten: Betrachtet man für ein beliebig kleines die beiden Funktionen
so gibt es stets einen (von und abhängigen) Zeitpunkt , sodass
Das zweite GesetzDas zweite Gesetz des iterierten Logarithmus behandelt den limes inferior des Wiener-Prozesses und ist eine einfache Folgerung aus dem ersten: da für alle Zeitpunkte gilt ( bezeichnet hierbei die Normalverteilung) und W deshalb insbesondere symmetrisch um den Nullpunkt verteilt ist, folgt daraus
Die Interpretation dieses Sachverhaltes erfolgt ebenfalls völlig analog: man ersetzt die Funktionen und einfach durch ihr Negatives und das Verb "überschreiten" durch "unterschreiten". Bemerkenswert ist hierbei insbesondere die Kombination der beiden Gesetze: während die äußeren Grenzen und irgendwann nicht mehr erreicht werden, werden die inneren, von den äußeren Grenzen nur marginal weit entfernten Grenzen und , noch beide unendlich oft überquert. Der Wiener-Prozess muss also immer wieder zwischen den beiden Grenzen hin- und heroszillieren und dabei insbesondere unendlich oft das Vorzeichen wechseln. Das dritte und vierte GesetzDie beiden anderen Gesetze des iterierten Logarithmus sind weniger anschaulich als die ersten beiden, da sie das Verhalten des Wiener-Prozesses nicht in einem unbeschränkten, sondern nur in einem sehr kleinen Intervall beschreiben, nämlich um den Nullpunkt herum. Dort gilt:
Analog zur obigen Interpretation betrachtet man zu beliebigem die beiden Funktionen
Dann gibt es wiederum ein (diesmal unter Umständen sehr kleines) , sodass
Da auch hier beide Gesetze gleichzeitig gelten, bedeutet das, dass der Wiener-Prozess fast sicher in jedem noch so kleinen Intervall unendlich oft das Vorzeichen wechselt und (da der Wiener-Prozess fast sicher stetig ist und somit dem Zwischenwertsatz genügt) dort unendlich viele Nullstellen hat. Zum Beweis der GesetzeWie bereits erwähnt, sind die Gesetze 1 und 2 auf Grund der Symmetrie der Normalverteilung äquivalent, was gleichfalls auf die Gesetze 3 und 4 zutrifft. Des Weiteren lässt sich schnell eine Äquivalenz zwischen dem ersten und dem dritten Gesetz auf Grund der Selbstähnlichkeit herstellen, die die beiden Probleme ineinander überführt. Es bleibt also lediglich das erste Gesetz zu beweisen. Dieser Beweis gelang erstmals 1929 dem russischen Mathematiker Alexandr Chintschin, also schon sechs Jahre nachdem Norbert Wiener die Existenz des Wiener-Prozesses bewiesen hatte. Es folgte später noch ein weiterer, weitaus eleganterer Beweis durch Paul Lévy unter Benutzung der Martingaltheorie, die Chintschin noch nicht bekannt war. Literatur
|