GeschwindigkeitsmessungBei einer Geschwindigkeitsmessung wird mit Hilfe technischer Einrichtungen bestimmt, welche Geschwindigkeit ein Objekt in einer bestimmten Richtung oder im Raum hat. Dieser Artikel bietet eine Übersicht der Wirkprinzipien; zur Beschleunigungsmessung siehe auch Accelerometrie. Berechnende Verfahren ermitteln die Durchschnittsgeschwindigkeit im betrachteten Weg- oder Zeit-Abschnitt. Wenn dieser Abschnitt sehr klein ist, wird annähernd die Momentangeschwindigkeit gemessen. Messmethoden die physikalische Effekte nutzen und nicht träge reagieren, messen die Momentangeschwindigkeit. Weiterhin können bei der Auswertung der Geschwindigkeitsverteilung die Maximal- und die Minimalgeschwindigkeit ermittelt werden. Berechnende VerfahrenZeitmessung einer WegstreckeMit Lichtschranken, Ultraschallschranken, Mikrowellenschranken, oder mit anderen schaltenden Sensoren wird die Zeit gemessen, die das Objekt für einen bestimmten Weg benötigt. Die Geschwindigkeit wird berechnet mit
Mit der Tachymeter-Skale der Stoppuhr wird die Geschwindigkeit einfacher durch eine Multiplikation berechnet. Anwendung im modernen Tachometer, beim Sport, bei der Geschwindigkeitsüberwachung im Straßenverkehr, beim Log (Messgerät). Wegmessung in festen ZeitabständenWenn die Position, Entfernung oder der zurückgelegte Weg () zu zwei Zeitpunkten ( und ) bekannt sind, berechnet sich die Geschwindigkeit mit
Die Position kann mit GPS, Laufzeitmessung von Laser- oder Radarimpulsen oder optisch mit Kameras gemessen werden. Weitere Verfahren siehe Entfernungsmessung. Anwendung z. B. bei der Laserpistole, optische Geschwindigkeitsmessung in Walzwerken, oder die Particle Image Velocimetry in Fluiden. Integration der BeschleunigungAus der gemessenen Beschleunigung kann durch Integration die Geschwindigkeit ermittelt werden. Fehler bei der Integration können durch Kontrolle mit anderen Sensoren herausgerechnet werden. Anwendung u. a. im Maschinenbau, bei Rütteltischen und in der Avionik (siehe Inertiales Navigationssystem). Physikalische EffekteElektromagnetische InduktionNach dem Induktionsgesetz ist die Spannung in einer Spule proportional zur Geschwindigkeit der Änderung des magnetischen Flusses. Dieses Prinzip nutzen Tachogeneratoren, Impeller, Tauchspulgeräte, Wirbelstromaufnehmer. Doppler-EffektWenn Schall, Mikrowellen oder Laserstrahlen von einem Objekt reflektiert werden, hat das Echo eine höhere Frequenz, wenn sich das Objekt auf den Betrachter zubewegt. Dieser Frequenzunterschied aufgrund des Doppler-Effektes wird ausgewertet. Einige Anwendungen, nach abnehmender Frequenz geordnet, sind die Laser-Doppler-Anemometrie bei Fluiden, die Laser surface velocimeter bei bewegten Oberflächen, der Doppler-Radarsensor der Odometrie und der Avionik, das Niederschlagsradar, sowie der medizinische Ultraschall-Doppler und der meteorologische Schall-Doppler. StaudruckmessungMit einer Prandtlsonde wird die Differenz zwischen Staudruck und statischem Druck gemessen. Die Strömung muss wirbellos sein. Dann gilt: Dabei ist die Dichte des Mediums. Diese Methode findet Anwendung zur Bestimmung der Geschwindigkeit von Flugzeugen, Schiffen und für die Strömungsgeschwindigkeit von Gasen (etwa beim Pneumotachographen[1]) und Flüssigkeiten. WärmeabgabeEin durch elektrischen Strom erhitzter Draht wird durch die ihn umströmende Luft abgekühlt. Die Widerstands- oder Längenänderung des Drahtes wird gemessen. Anwendung im Hitzdrahtanemometer, Schnelleempfänger Laufzeitmessung von SchallBreitet sich eine Schallwelle parallel oder schräg zur Geschwindigkeitsrichtung eines Fluids aus, kann dessen Geschwindigkeit aus den Laufzeiten berechnet werden. Anwendung als Ultraschall-Durchflussmesser oder -Anemometer oder mit viel geringeren Frequenzen in der Tomografie der Ozeane. Weitere Verfahren
AnwendungenZu Lande
Zu Wasser
In der Luft
In Wissenschaft und ForschungAstronomieIn der Astronomie sind die räumlichen Bewegungen der Gestirne von Interesse. Sie werden astrometrisch (langsame Änderung der Sternörter) und durch Spektroskopie erfasst:
Die Raumbewegungen der Sterne enthalten aber systematische Anteile, vor allem durch die lokal unterschiedliche Rotation um das Milchstraßenzentrum (annähernd kreisförmig, etwa 200–250 km/s) und bei Bewegungshaufen (gemeinsam entstandene Sterne, etwa 20–100 km/s). AtomphysikFür die Teilchenphysik ist u. a. die Messung von Atombewegungen wichtig. Sie gelang erstmals 1920 dem Physiker Otto Stern als direkte Messung der Geschwindigkeit von Silberatomen. WeblinksWiktionary: Geschwindigkeitsmessung – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Einzelnachweise
|