GasdiffusionselektrodeGasdiffusionselektroden sind Elektroden, in denen die drei Aggregatzustände – fest, flüssig und gasförmig – miteinander in Kontakt stehen und der feste, Elektronen leitende Katalysator eine elektrochemische Reaktion zwischen der flüssigen und der gasförmigen Phase katalysiert. Der feste Katalysator ist dabei üblicherweise zu einer porösen Folie mit einer Dicke um 200 µm verpresst. Besonders bekannt ist ihre Anwendung in Brennstoffzellen, bei denen aus den Gasen Wasserstoff und Sauerstoff in einer Art kalten Verbrennung Wasser und elektrische Energie entsteht. PorensystemEine wichtige Voraussetzung für den Betrieb von Gasdiffusionselektroden ist, dass sowohl die flüssige als auch die gasförmige Phase gleichzeitig im Porensystem der Elektroden vorliegen können. Wie dies zu realisieren ist, wird über die Young-Laplace-Gleichung ersichtlich: Der Gasdruck p steht also mit der Flüssigkeit im Porensystem in Relation über den Porenradius r der Oberflächenspannung σ der Flüssigkeit und dem Benetzungswinkel Θ. Diese Gleichung ist jedoch nur als Orientierungshilfe zu verstehen, weil zu viele Parameter unbekannt oder schwer zu bestimmen sind:
Um somit in einer Elektrode Raum für Flüssigkeit und Gas zu schaffen, kann man den Weg beschreiten, unterschiedliche Porenradien r oder unterschiedliche Benetzungswinkel Θ zu erzeugen. Die nächsten beiden Kapitel erläutern, wie dies realisiert wurde. SinterelektrodenIn dem Bild der Sinterelektrode ist zu erkennen, dass drei verschiedene Korngrößen eingesetzt wurden, die unterschiedliche Schichten bildeten:
Auf diese Art wurden viele Elektroden zwischen 1950 und 1970 für den Einsatz in Brennstoffzellen gefertigt. Hierfür standen bei VARTA, Siemens u. a. Pilotproduktionen bereit. Diese Art der Herstellung wurde jedoch aus wirtschaftlichen Gründen fallen gelassen, weil
In dem Bild „Prinzip der Gasdiffusionselektrode“ ist deren Aufbau nochmals dargestellt. In der Mitte der Elektrode befindet sich die sogenannte Gasleitschicht. Bei nur kleinem Gasüberdruck wird der Elektrolyt aus diesem Porensystem verdrängt. Ein kleiner Strömungswiderstand sorgt dafür, dass sich das Gas ungehindert entlang der Elektrode ausbreiten kann. Bei einem etwas erhöhten Gasdruck wird auch der Elektrolyt im Porensystem der Arbeitsschicht verdrängt, wenn auch nur teilweise. Die Deckschicht selbst ist so feinporig gewählt, dass auch bei Druckspitzen Gas durch die Elektrode in den Elektrolyten gelangen kann. Hergestellt wurden solche Elektroden durch Aufstreuen und anschließendes Sintern oder Heißpressen. Um mehrschichtige Elektroden zu erzeugen, wurde also zunächst ein feinkörniges Material in eine Matrize gestreut und geglättet. Anschließend wurden die andere Materialien übereinander in Schichten aufgetragen und dann verpresst. Die Herstellung war nicht nur fehlerträchtig, sondern auch zeitaufwendig und schwer zu automatisieren. Kunststoffgebundene ElektrodenDaher wird seit ca. 1970 ein anderer Weg beschritten, eine Elektrode mit sowohl hydrophilen als auch hydrophoben Bereichen herzustellen, weil mit der Einführung des PTFE ein Material zur Verfügung steht, welches
Für das Porensystem bedeutet dies, dass an den Stellen mit hohem PTFE Anteil kein Elektrolyt eindringen kann, jedoch dafür an Stellen mit niedrigem PTFE-Anteil. Selbstverständlich darf in diesem Fall der Katalysator selbst nicht auch noch hydrophoben Charakter haben. Es gibt zwei technische Varianten, solche PTFE-Katalysator-Mischungen herzustellen:
Die Dispersionsroute wird hauptsächlich für Elektroden mit polymerem Elektrolyten gewählt – so z. B. erfolgreich eingeführt bei der PEM Brennstoffzelle PEM oder der HCL Membran-Elektrolyse. Bei Einsatz in flüssigen Elektrolyten ist das Trockenverfahren geeigneter. Zwar kann bei der Dispersionsroute durch Verdampfen des Wassers und Sintern des PTFE bei 340 °C auf ein mechanisches Verpressen verzichtet werden. Dadurch werden diese Elektroden sehr offenporig. Aber auf der anderen Seite können bei falschen Trocknungsbedingungen schnell Risse in der Elektrode entstehen, durch die flüssiger Elektrolyt dringen kann. Daher hat sich für Anwendungen mit flüssigem Elektrolyten wie die Zink-Luft-Batterie oder die alkalische Brennstoffzelle AFC das Trockenmischverfahren durchgesetzt. Neben diesen Benetzungseigenschaften muss die Elektrode selbstverständlich eine optimale elektrische Leitfähigkeit aufweisen, damit die Elektronen mit möglichst geringem ohmschem Widerstand transportiert werden können. KatalysatorenLetztendlich ist die richtige Wahl des Katalysators ausschlaggebend. Für die Katalyse in sauren Elektrolyten haben sich hauptsächlich Edelmetallkatalysatoren wie Platin, Ruthenium, Iridium und Rhenium durchgesetzt. In alkalischen Systemen wie der Zink-Luft-Batterie kommen preisgünstige Katalysatoren wie Kohlenstoff, Mangan oder Silber in Frage. Technische ParameterUm die Eigenschaften der Gasdiffusionselektrode zu quantifizieren, werden folgende Parameter angegeben:
Aufgrund der geringen Dicke von Gasdiffusionselektroden ist der Flächenwiderstand ebenfalls sehr gering. Bei diesen Geometrien können die Widerstände nicht nach der 4-Punkt-Methode bestimmt werden. Daher wird die Gasdiffusionselektrode zwischen zwei vergoldeten Stempeln unter hohem Druck gemessen, um die Kontaktwiderstände zu minimieren. EinsatzZunächst wurden die Gasdiffusionselektroden für den Einsatz in der Brennstoffzelle entwickelt. Wurde noch bis 1950 an der Bacon-Zelle zur Verstromung von Kohle bei hohen Temperaturen gearbeitet, so kamen in den 1950er Jahren Tendenzen zur Verstromung von Gasen auf, insbesondere natürlich Wasserstoff wegen der hohen Reaktivität. Im Laufe der Zeit haben sich jedoch vielfältige Einsatzmöglichkeiten in anderen Anwendungen gezeigt:
Ein aktuelles Forschungsgebiet ist der Einsatz von Gasdiffusionselektroden bei der elektrochemischen Umsetzung von Kohlendioxid[1] und zur Herstellung von wiederaufladbaren Eisen-Luft-Akkumulatoren.[2] Weblinks
Einzelnachweise
|