Facility LocationBei einem Facility Location Problem (FL) handelt es sich um ein Optimierungsproblem, in dem es darum geht aus einer Menge an Standorten eine Teilmenge als Versorgungsstandorte auszusuchen, sodass diese unter den gegebenen Bedingungen optimal platziert sind. Das exakte Finden solcher Teilmengen gilt als algorithmisch schwierig und ist im Allgemeinen NP-schwer. EinführungAnwendungen der Facility-Location sind sehr vielfältig. Es können optimale Standorte von Krankenhäusern zur Krankenversorgung bestimmt werden, für Firmen stellt sich zum Beispiel die Standortfrage von Fabriken, aber auch im Zuge der ständig fortschreitenden Expansion des Internets stellt sich die Frage der geschickten Positionierung von Servern. Allgemein kann ein FL folgendermaßen formuliert werden: Aus gegebenen Mengen von Verbrauchern und Anbietern und gegebenen Kosten soll aus der Menge der Anbieter eine Teilmenge gefunden werden, so dass jeder Verbraucher von genau einem Anbieter versorgt wird und dabei die Kosten minimiert werden. Eine weitere Variante eines FL entsteht, wenn gefordert wird, dass jeder Verbraucher von mindestens einem Anbieter versorgt wird. Die Kosten setzen sich dabei aus den paarweise vorliegenden Verbindungskosten zwischen Verbrauchern und Anbietern und den Kosten für die Eröffnung und/oder dem Betrieb eines Anbieters zusammen. Beispiel
ModellierungEin FL wird normalerweise als vollständiger bipartiter Graph modelliert, wobei die Bipartion aus der Vereinigung der beiden disjunkten Mengen der Anbieter (facilities) und der Verbraucher (customers) entsteht. Zusätzlich werden zwei positive Abbildungen (Verbindungskosten) und (Eröffnungs-/Betriebskosten) definiert. Gilt für die Kostenfunktion eine erweiterte Dreiecksungleichung, so spricht man vom metrischen Facility Location Problem:
Gesucht ist eine Teilmenge und eine Zuordnung , die minimiert. LösbarkeitDa es sich bei Facility Location um ein NP-schweres Problem handelt, werden zur Lösung Approximationsalgorithmen herangezogen. Im Gegensatz zu dem metrischen Facility Location Problem, das sich mit konstanter Güte approximieren lässt, kann das allgemeine Facility Location Problem (bei dem die Dreiecksungleichung also nicht gelten muss) nicht besser als approximiert werden. Im Folgenden sind einige Approximationsalgorithmen aufgeführt, die das metrische Facility Location Problem mit konstanter Güte approximieren: Jain-Vazirani-AlgorithmusKamal Jain und Vijay Vazirani stellten 2001[1] einen Algorithmus vor, der auf einer primal-dualen Variante eines Linearen Programmes beruht. Dabei konnten sie nachweisen, dass das Ergebnis eine 3-Approximation ist, also höchstens dreimal schlechter ist als das Optimum. Die Laufzeit des Algorithmus beträgt , mit . Mahdian-Ye-Zhang-AlgorithmusMohammad Mahdian, Yinyu Ye und Yiawei Zhang veröffentlichten 2002 eine Variante eines Greedy-Algorithmus', der eine Lösung eines FL-Problems mit der Güte approximiert. Der wesentlich bessere Faktor, um den sich die Lösung maximal vom Optimum unterscheidet muss allerdings mit einer höheren Laufzeit (, mit ) als der des Jain-Vazirani-Algorithmus bezahlt werden.[2] Literatur
Einzelnachweise
|