Deduktiv-nomologisches ModellDas deduktiv-nomologische Modell (kurz DN-Modell) ist eine formale Struktur der wissenschaftlichen Erklärung eines Kausalzusammenhangs mittels natürlicher Sprache. Es dient sowohl zur Erklärung von allgemeinen Gesetzmäßigkeiten als auch von einzelnen sprachlich beschreibbaren Ereignissen. Das Modell wurde von Carl Gustav Hempel und Paul Oppenheim 1948 in dem Artikel Studies in the Logic of Explanation vorgeschlagen und ist auch als Hempel-Oppenheim-Schema (kurz HO-Schema) bekannt. Es besteht aus zwei Teilen, dem durch Schließen zu erklärenden Satz (Explanandum) sowie der Erklärung (Explanans), die sich aus allgemeinen Gesetzesaussagen und (empirischen) Randbedingungen (Antezedensaussagen) als Prämissen zusammensetzt. Die Grundstruktur des Schemas ist spätestens seit dem 19. Jahrhundert bekannt und wurde von Karl Popper 1935 in Logik der Forschung aufgegriffen. Nach der Ausarbeitung durch Hempel und Oppenheim 1948 wurde es ab den späten 1950ern[1] von zahlreichen Autoren diskutiert. DefinitionZitat: Die Frage „Warum tritt das Phänomen auf?“ wird aufgefasst als Frage „Nach welchen allgemeinen Gesetzen und aufgrund welcher Vorbedingungen tritt das Phänomen auf?“[2] Eine deduktiv-nomologische Erklärung eines Sachverhaltes ist ein logisch korrektes Argument, das aus dem Explanans (den erklärenden Sätzen) – allgemeingültigen (wissenschaftlichen) Gesetzen und speziellen Bedingungen – und dem daraus ableitbaren Explanandum (dem zu erklärenden Satz) besteht. Die Erklärung des Phänomens besteht im Nachweis, dass das Phänomen den bekannten allgemeinen Gesetzen gehorcht, die auf die speziellen Gegebenheiten anzuwenden sind. Explanans:
- - - - - - - - - - - - (impliziert) Folgendes Beispiel stammt von Karl Popper (L=Gesetz, C=Rand- oder Anfangsbedingungen): Explanans:
Explanandum:
ExplanansDas Explanans ist das Erklärende (Partizip Präsens Aktiv von lat. explanare „auslegen, erklären, deuten“). Es setzt sich zusammen aus:
ExplanandumDas Explanandum ist der Satz, der das zu Erklärende (Gerundivum neutrum zu lateinisch explanare „ausbreiten, verdeutlichen, erklären“) beschreibt (nicht das Phänomen selbst).[3] Es ist das Ereignis / die Beobachtung, die erklärt werden soll, und ist – bei einer erfolgreichen Erklärung – das Ergebnis des Schlusses aus dem Explanans. AdäquatheitsbedingungenEine Erklärung kann nur korrekt sein, wenn die vier folgenden notwendigen Bedingungen erfüllt sind. Logische Adäquatheitsbedingungen
Empirische Adäquatheitsbedingung
Erklärung und VorhersageEine Erklärung ist in diesem Modell formell identisch mit einer Vorhersage: Ist das Explanandum gegeben, so bieten korrekt ausgewählte Gesetze und Bedingungen seine Erklärung; sind die Gesetze und Bedingungen gegeben, erlauben sie die Vorhersage des Explanandums. Eine Erklärung ist nur adäquat, wenn sie das Phänomen auch hätte vorhersagen können.[4] Sind die Prämissen des DN-Argumentes zuerst bekannt und wird die Konklusion daraus nachträglich abgeleitet, so spricht man von einer ex-ante DN-Begründung (oder DN-Voraussage im epistemischen Sinn). Ein solches Argument ist eine DN-Voraussage im zeitlichen Sinn, wenn das Antezedensereignis zeitlich vor dem Explanandumereignis eintritt, und sie ist eine Retrodiktion, wenn es erst danach eintritt. Beispiel: Die Herleitung einer zukünftigen Sonnenfinsternis aufgrund astronomischer Daten (und physikalischer Theorie) ist eine Voraussage, die Herleitung eines vergangenen Meteoreinschlages aus geologischen Funden ist eine Retrodiktion. Problemfälle für das DN-Modell
Beispiel: Die Herleitung der bereits bekannten Höhe eines Turms aus seiner Schattenlänge ist eine ex-post-DN-Begründung, aber keine DN-Erklärung, weil die Schattenlänge nicht die Ursache der Turmhöhe ist.
Literatur
Belege
Weblinks
|