Davis-Putnam-Verfahren

Das Davis-Putnam-Verfahren (nach Martin Davis und Hilary Putnam) entscheidet über die Unerfüllbarkeit einer aussagenlogischen Formel in konjunktiver Normalform. Das Verfahren sollte nicht mit der Weiterentwicklung, dem DPLL (Davis-Putnam-Logemann-Loveland)-Algorithmus, verwechselt werden.

Definition

Das Davis-Putnam-Verfahren stellt Regeln für die Transformation von Blöcken in Blöcke, von der Form „ersetze eine Klausel durch eine (eventuell leere) Klauselmenge“ zur Verfügung. Wenn B in B' transformiert wird, dann ist B unerfüllbar genau dann, wenn B' unerfüllbar ist. Ein Block ist unerfüllbar, wenn alle Formeln, die er enthält, unerfüllbar sind.

Eine Sequenz von Blöcken (eine Herleitung) wird mit Hilfe von Regeln erzeugt. Die Formel ist unerfüllbar, wenn ein „syntaktisch unerfüllbarer Block“ erzeugt wird, und erfüllbar, wenn ein „syntaktisch erfüllbarer Block“ erzeugt wird.

Regeln

Beginn einer – nicht erfolgreichen – Herleitung aus der Formel (¬x1) ∧ (x1x2x4) ∧ (x3∨¬x1x2) bzw. als Klauselmenge { {¬x1}, {x1,x2,x4}, {x3x1,x2} }: die One-Literal-Regel für ¬x1 führt in drei Schritten (komplettes Streichen der 1. und 3. Klausel, da sie ¬x1 enthalten, Streichen von x1 aus der 2. Klausel) zu (x2x4) bzw. { {x2,x4} }; daraus wird x1=0 und nach weiteren (nicht gezeigten) Regelanwendungen letztlich x2=1 gewonnen. Diese Belegung erfüllt die ursprüngliche Formel.
  • Splitting-Regel
    Sei eine nichtleere Formel mit mindestens einer nichtleeren Klausel , sei ein Literal in . Ersetze durch zwei Formeln und .
  • One-Literal-Regel
    Sei eine Formel der Form (Das heißt komme in einer Klausel von alleine vor.) Ersetze durch .
  • Pure-Literal-Regel
    Sei eine Formel, die mindestens eine Klausel mit einem Literal und keine Klausel mit dem Literal enthält. Ersetze durch .
  • Subsumption-Regel
    Wenn eine Formel zwei Klauseln enthält mit , dann streiche aus .
  • Bereinigungsregel
    Streiche alle Klauseln, die ein Literal und seine Negation enthalten.

Hinweis:
wird aus gewonnen, indem man

  • alle enthaltenden Klauseln streicht, und
  • alle Vorkommnisse von in den übrigen Klauseln streicht.

wird aus in analoger Weise gewonnen, indem man

  • alle enthaltenden Klauseln streicht, und
  • alle Vorkommnisse von in den übrigen Klauseln streicht.

Herleitung

  • Eine Herleitung aus der Formel F ist eine Sequenz von Blöcken, die mit Hilfe der Regeln konstruiert wird.
  • Eine Herleitung ist maximal, wenn sie nicht erweitert werden kann.
  • Eine Herleitung ist erfolgreich, wenn sie mit einem Block endet, der in jeder Formel die leere Klausel enthält.
  • Eine Herleitung ist nicht erfolgreich, wenn sie mit einem Block endet, der eine leere Formel enthält.

Korrektheit

Sei F eine unerfüllbare Formel. Dann ist jede maximale Herleitung aus F erfolgreich. Sei F eine erfüllbare Formel. Dann ist jede maximale Herleitung aus F nicht erfolgreich.

Quellen

  • Martin Davis, Hilary Putnam: A Computing Procedure for Quantification Theory. In: Journal of the ACM. Vol. 7, Nr. 3, 1960, S. 201–215, doi:10.1145/321033.321034 (englisch).