Bismut(III)-iodid

Kristallstruktur
Kristallstruktur von Bismut(III)-iodid
_ Bi3+ 0 _ I
Kristallsystem

trigonal

Raumgruppe

R3 (Nr. 148)Vorlage:Raumgruppe/148

Gitterparameter

a = 751,3 pm
c = 2071,8 pm

Koordinationszahlen

Bi[6], I[2]

Allgemeines
Name Bismut(III)-iodid
Andere Namen

Bismuttriiodid

Verhältnisformel BiI3
Kurzbeschreibung

dunkelgraues Pulver mit säuerlichem Geruch[1]

Externe Identifikatoren/Datenbanken
CAS-Nummer 7787-64-6
EG-Nummer 232-127-4
ECHA-InfoCard 100.029.207
PubChem 24860889
ChemSpider 21172753
Wikidata Q425085
Eigenschaften
Molare Masse 589,69 g·mol−1
Aggregatzustand

fest

Dichte

5,78 g·cm−3[1]

Schmelzpunkt

408 °C[1]

Siedepunkt

500 °C (Zersetzung[2])

Löslichkeit
  • nahezu unlöslich in Wasser[3]
  • gut löslich in Ethanol (500 g/l)[3]
  • gut löslich in flüssigem Ammoniak[2]
  • wenig löslich in Benzol und Toluol[4]
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung[3]
Gefahrensymbol

Gefahr

H- und P-Sätze H: 314
P: 280​‐​305+351+338​‐​310[3]
Thermodynamische Eigenschaften
ΔHf0

−150 kJ·mol−1[5]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet.
Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa).

Bismut(III)-iodid ist ein Salz des Bismuts mit der Iodwasserstoffsäure. Es besitzt die Verhältnisformel BiI3. Bismut liegt hierbei in der Oxidationsstufe +3 vor.

Darstellung

Bismut(III)-iodid kann direkt aus den Elementen synthetisiert werden. Hierzu werden feinverteiltes Bismut und Iod zusammen erhitzt.[6]

Es kann auch aus einer Lösung von Bismut(III)-chlorid in Salzsäure mit konzentrierter Iodwasserstoffsäure gefällt werden.[4]

Eigenschaften

Es handelt sich um einen grauen bis schwarzen Feststoff, der bei 408 °C schmilzt. Sublimiert bzw. rekristallisiert bildet es schwarz-fettglänzende, graphitähnliche Blättchen[7].

Kristallstruktur

Bismut(III)-iodid kristallisiert im trigonalen Kristallsystem in der Raumgruppe R3 (Nr. 148)Vorlage:Raumgruppe/148 mit a = 751,3 pm, c = 2071,8 pm und Z = 6. Die Iodidionen bilden eine hexagonal-dichteste Kugelpackung, in der jede übernächste Oktaederlückenschicht zu 2/3 mit Bismutionen besetzt ist. Die Bismutionen sind also oktaedrisch von sechs Iodidionen umgeben. Jedes Iodidion ist gewinkelt von zwei Bismutionen umgeben. BiI3 ist namensgebend für den BiI3-Strukturtyp, in dem auch AsI3, SbI3, BiI3, ScCl3, VCl3, FeCl3 kristallisieren.[8]

Verwendung

Da Bismut(III)-iodid unlöslich in Wasser ist, kann es zum Nachweis von Bismut genutzt werden. Aus Bi(III)-haltigen Lösungen fällt bei Zugabe eines wasserlöslichen Iodidsalzes (beispielsweise Kaliumiodid) graues Bismut(III)-iodid aus und zeigt so die Anwesenheit von Bismut an. Der Niederschlag löst sich bei weiterer Zugabe des Iodidsalzes unter Bildung eines orangefarbenen Tetraiodobismutat-Komplexes ([BiI4]) wieder auf.[7]

Es wird zurzeit (2017) überlegt, ob man durch Einbringung von Bismut(III)-iodid in die Atmosphäre (sog. Geoengineering) die globale Erwärmung verlangsamen kann. David Mitchell von der University of Nevada schlägt vor, jährlich 160 t (Kosten: ca. 6 Millionen US-Dollar) hierfür zu verwenden.[9]

Einzelnachweise

  1. a b c Datenblatt Bismut(III)-iodid bei Alfa Aesar, abgerufen am 7. Januar 2010 (Seite nicht mehr abrufbar).
  2. a b George W. Watt et al.: Bismuth(III) iodide. In: J. C. Bailar, Jr. (Hrsg.): Inorganic Syntheses. Band 4. McGraw-Hill, Inc., 1953, S. 114–116 (englisch).
  3. a b c d Datenblatt Bismut(III)-iodid bei Sigma-Aldrich, abgerufen am 13. März 2011 (PDF).Vorlage:Sigma-Aldrich/Name nicht angegeben
  4. a b Georg Brauer (Hrsg.), unter Mitarbeit von Marianne Baudler u. a.: Handbuch der Präparativen Anorganischen Chemie. 3., umgearbeitete Auflage. Band I, Ferdinand Enke, Stuttgart 1975, ISBN 3-432-02328-6, S. 600.
  5. A. F. Holleman, N. Wiberg: Anorganische Chemie. 103. Auflage. 1. Band: Grundlagen und Hauptgruppenelemente. Walter de Gruyter, Berlin / Boston 2016, ISBN 978-3-11-049585-0, S. 952 (eingeschränkte Vorschau in der Google-Buchsuche).
  6. H. Erdmann, F. L. Dunlap: Handbook of Basic Tables for Chemical Analysis, John Wiley & Sons New York, S. 76.
  7. a b Jander, Blasius, Strähle: Einführung in das anorganisch-chemische Praktikum. 14. Auflage. Hirzel, Stuttgart 1995, ISBN 978-3-7776-0672-9.
  8. H. Braekken: Die Kristallstruktur der Trijodide von Arsen, Antimon und Wismut. In: Zeitschrift für Kristallographie. Band 75, 1930, S. 574–575.
  9. James Temple: The Growing Case for Geoengineering. In: MIT Technology Review. 18. April 2017, abgerufen am 28. Juni 2017 (englisch).