Benjamin-Ono-GleichungDie Benjamin-Ono-Gleichung (BO-Gleichung) ist eine nichtlineare partielle Differentialgleichung (Evolutionsgleichung) mit Solitonenlösung. Sie ist exakt integrabel und eine Integro-Differentialgleichung der Form:[1] wobei die Hilbert-Transformation ist: und für den Cauchyschen Hauptwert steht. Tiefgestellte Indizes bedeuten partielle Ableitungen. Die Benjamin-Ono-Gleichung ist durch Inverse Streutransformation (IST) exakt lösbar[2] und wurde 1967 zur Beschreibung interner Wasserwellen in großer Tiefe eingeführt.[3][4] Innere Wellen entstehen z. B. an Grenzflächen von Flüssigkeitsschichten unterschiedlicher Dichte. Sie ist nach H. Ono und Brooke Benjamin benannt. Intermediate Long Wave-GleichungZur Beschreibung innerer Wellen wird manchmal auch die ILW (Intermediate Long Wave)-Gleichung benutzt.[5] Sie ist ebenfalls eine Integro-Differentialgleichung mit einem singulären Integraloperator, besitzt jedoch gegenüber der Benjamin-Ono-Gleichung zusätzlich einen Term , in dem die Konstante die Tiefe angibt: mit dem Integraloperator (Faltung von mit Kotangens hyperbolicus) Für (tiefes Wasser) geht die Intermediate Long Wave-Gleichung in die Benjamin-Ono-Gleichung über und für (flaches Wasser) in die Korteweg-de-Vries-Gleichung. Die IST für die ILW vermittelt zwischen den IST-Schemen dieser beiden Grenzfälle. Das IST-Schema der Benjamin-Ono-Gleichung hat eher die Form eines IST-Schemas für mehrdimensionale Probleme (zwei Dimensionen). Die Untersuchung von ILW- und BO-Gleichung ist deshalb auch mathematisch von Interesse für den Übergang von ein- zu mehrdimensionalen IST-Schemen. Es gibt Varianten der Gleichung, die auch exakt integrabel sind. Literatur
WeblinksEinzelnachweise
|