Ötztal-Stubai-KristallinDas Ötztal-Stubai-Kristallin ist ein Grundgebirge, dessen Gestein mehrere Umwandlungen (Polymetamorphose) erfuhr. Es ist Teil des ostalpinen Deckensystems, welches während der alpidischen Gebirgsbildung über die penninischen geologischen Einheiten geschoben wurde. Das Ötztal-Stubai-Kristallin weist verschiedene Ähnlichkeiten mit der Silvretta-Decke auf, besonders die Entstehung der Gesteine und die Strukturen deuten auf eine ähnliche und verwandte tektonische „Ausgangsposition“ hin. Die Aufwölbung des Engadin-Fensters im Tertiär führte dann zu dessen Zerlegung. GrenzenDie Grenzen dieser geologischen Einheit sind tektonischer Natur und können wie folgt gezogen werden:
Gesteinskunde und StrukturenDie durch mehrfache Metamorphose überprägte Basis des ÖSK besteht hauptsächlich aus mittel- bis hochmetamorphen Paragneisen, die ursprünglich aus tonigem oder sandigem Material entstanden sind. Des Weiteren sind auch Glimmerschiefer, Quarzit, Orthogneis, Amphibolit, Eklogit und selten Marmore vorhanden. Im ÖSK treten verschiedene tektonische Stile auf. Der nördliche Teil ist durch Ost-West geneigten Faltenachsen charakterisiert, eingeschobene Orthogneise, die aus magmatischen Gesteinen entstanden sind, sind in die gleiche Richtung orientiert. Im südlichen Teil kann eine ähnliche Orientierung nicht beobachtet werden, hier prägen geräumige Falten mit steiler Faltenachse (Schlingentektonik) und Mikrofaltung im Millimeterbereich das Bild. Die Schlingentektonik ist wahrscheinlich in einer frühen Phase der alpidischen Gebirgsbildung entstanden. MineralogieGranat, Amphibol und Plagioklas weisen, in Übereinstimmung mit dem polymetamorphen Charakter dieser Gesteine, eine diskontinuierliche Zonierung (Eo-Alpine Kerne, alpidisch gebildete Ränder) auf. Die zonierten Ca-Amphibole weisen einen prograden Übergang von einem Mg-reichen Kern zu einem Fe-reichen Rand auf, ein genereller Fe ↔ Mg Austausch ist deshalb anzunehmen. Bei den Feldspäten ist eine ähnliche Entwicklung erkennbar: die Kerne der zonierten Plagioklase sind annähernd reine Albite (Ab96-97), während die Ränder nach außen hin sukzessive anorthitreicher (Ab80-67) werden. Die auffälligsten Zonierungen im Granat werden von den Elementen Magnesium (Mg) und Mangan (Mn) dargestellt. Die Kornränder sind eindeutig an Mg, die Kerne an Mn angereichert. Metamorphe EntwicklungDie ältesten Gesteine des ÖK wurden durch Uran/Blei-Isotopenanalysen an Zirkonen in Paragneisen entdeckt. Diese ergaben ein beträchtliches Bildungsalter von > 1500 Ma (Grauert, 1969). Da das gesamte Gebiet mindestens drei Metamorphosen erlebte und somit polymetamorph überprägt worden ist, sind die Zirkone in den Metamorphiten nur mehr in detritischer Form vorhanden. Im Ötztal-Stubai-Kristallin konnten drei verschiedene Metamorphe Phasen entdeckt werden: Prävariszische MetamorphoseDie prävariszische Metamorphose ist noch in den verschiedenen Migmatiten vorzutreffen (Winnebach-Migmatit, Verpeilmigmatit und das Nauderer Gaisloch). Sie bildeten sich in den Biotit-Plagioklas-Gneisen des mittleren ÖSK unter Amphibolit-Granulitfaziellen Bedingungen bei einer Temperatur zwischen 660 und 685 °C und einem Druck von über 4 kbar. Datierungen an Zirkonen aus dem Winnebachmigmatit ergeben ein Mindestalter der Anatexis von 490 Millionen Jahren (Klötzli-Chowanetz et al ., 2001). Thöni et al. (2008) bestimmte ein Alter von 430–450 Millionen Jahren für die Bildung der Migmatite anhand von Uran-Thorium-Blei-Monazitdatierungen. Variszische MetamorphoseDie Variszische Metamorphose erfolgte unter Eklogit- bis Amphibolitfaziellen Bedingungen:
Alpidische MetamorphoseDieses Metamorphoseereignis erfolgte unter Grünschieferfaziellen Bedingungen im Osten bis zu Epidot-/Amphibolit-/Eklogitfaziellen Bedingungen im Südwesten und führte zur Bildung von frühalpinen Vergesellschaftungen entlang von NE-SW geneigter Isograde. Wo die Bedingungen dieser Metamorphosephase schwächer als die variszischen waren, kann man einen Zusammenbruch und Zerfall der Zweiten beobachten: z. B. Staurolith, Chloritoid; Staurolith, Paragonit + Chlorit. Die höchsten Druck-Temperatur-Bedingungen des Ereignisses zur Frühzeit der alpinen Gebirgsbildung wurden im Südwesten des ÖSK erreicht. Gesteine in diesem Gebiet haben Amphibolit- bis Eklogitfazielle Temperaturen und Drucke erfahren. Dies führte in den Metapeliten zur Bildung von Staurolith und Disthen. Die typische Vergesellschaftung ist also: Granat + Biotit + Muskovit + Plagioklas + Quarz sowie von mehr oder weniger Paragonit/Staurolith/Disthen.
Die frühalpine Überprägung hat natürlich zu einer Verjüngung der variszischen mit Rubidium/Strontium- und Kalium/Argon-Isotopenanalysen gemessenen Alter geführt. Diese Verjüngung kann man im Gelände sehr gut nachvollziehen, im NW war die Überprägung nur schwach, die variszischen Alter blieben erhalten; steigende frühalpine Druck-Temperatur-Bedingungen werden mit sinkendem Alter der Gesteine gegen Südwesten angezeigt. Im Gebiet mit den höchsten Drucken und Temperaturen kam es dann sogar zu einem Zurückstellen der geologischen Uhr. Abkühlung und Freilegung des ÖSKDie Abkühlung des ÖSK startete sofort nach dem Höhepunkt der frühalpidischen Metamorphose, also vor ca. 90–100 Millionen Jahren und endete nach ca. 30 Millionen Jahren bei Oberflächen-Temperaturen. Nach Elias (1998) erfolgte das Nachlassen der Temperatur nicht regelmäßig, sondern mit verschiedenen Höhepunkten und Zeiten fast keiner Abkühlung. Im östlichen Teil des ÖSK konnten Hinweise auf eine Freilegung des Gesteins durch Erosion (Kreide/Tertiär) ergründet werden (Fügenschuh, 2000). Die durchschnittliche Geschwindigkeit der Freilegung des Gesteins wurde mit einem Millimeter pro Jahr bestimmt. GeothermobarometrieDie thermobarometrischen Berechnungen ergeben eine durchschnittliche Temperatur von 580 °C und einen Druck von 0.90 GPa für die Metabasite und 600 °C, und 1.10 GPa für die Metapelite. Die Thermometrie mittels Spurenelementen (Zr im Rutil) bestätigt die berechneten Temperaturen von ca. 550 °C. Literatur
Einzelnachweise
|