عدد برونيالعدد البروني هو عدد ناتج عن جداء عددين صحيحين متتاليين، أي عدد على شكل n(n + 1) . [1] تعود دراسة هذه الأعداد إلى أرسطو . وتسمى أيضًا أعداداً مستطيلة، أو أعداد غير متجانسة، [2] أو أعداد مستطيلة ؛ [3] ومع ذلك، فإن مصطلح «عدد مستطيلي» تم تطبيقه أيضًا على الأعداد المؤلفة . [4][5] لائحة الأعداد البرونية تبدأ كالآتي:
إذا كان n عدداً برونيًا، فإنه يستوفي التالي : كأعداد شكليةتمت دراسة الأعداد البرونية كأعداد شكلية جنبًا إلى جنب مع الأعداد المثلثية والمربعات الكاملة في ميتافيزيقيا أرسطو، [2] وقد نُسب اكتشافها في وقت مبكر جدًا إلى الفيثاغورس . [3] كنوع من عدد شكلي، وتسمى أحيانا أعداد برونية مستطيلية لأنها مماثلة ل العدد المضلعي بهذه الطريقة: [1]
العدد البروني النوني هو ضعف العدد المثلثي النوني [1] [2] و أكبر ب n من العدد النوني التربيعي، وهذا يتضح من الصيغة البديلة n2 + n للأعداد البرونية. مجموع الأعداد البرونيةمجموع مقلوبات الأعداد البرونية (باستثناء 0) هو متسلسلة متداخلة مجموعها يتقارب إلى 1: [6] خصائص إضافيةالعدد البروني النوني هو مجموع أول n عدد صحيح زوجي [2] كل الأعداد البرونية هي أعداد زوجية، و 2 هو العدد الأولي البروني الوحيد. وهو أيضًا العدد البروني الوحيد في متتالية فيبوناتشي وعدد لوكاس . [7] [8]
مراجع
|