بيان مستوفي المخططات، المخطّط المستوي هو المخطّط الذي يقبل تمثيلا في المستوى، بحيث لا يتقاطع أي حرفين من المخطّط.[1][2][3] معايير المخطّط المستويحسب كوراتوفسكي, يكون المخطط مستويا إذا لم يتضمن زمرة من الرتبة الخامسة، أو مخططا ثنائيا كاملا من الرتبة الثالثة. وجوه مخطط مستويليكن G مخططا مستويا، الوجه F هو أكبر منطقة من المستوى محدّدة بمجموعة حروف G ولا تتضمن أيا منها. ليكن G مخطّطا مستويا، و a عدد حروف G. إذن : صيغة أويلرتعاريف
تمهيدةكل مخطّط متّصل يمكن الحصول عليه بإضافة عدّة قمم لشجرة (لها نفس عدد القمم). صيغة أويلر للمخطّطات المستوية المتّصلةليكن G مخطّط مستوي متّصل. ليكن n عدد قمم a, G عدد حروفه و f عدد وجوهه. إذن: n − a + f = 2 المعاييرتحديد المعايير التي تمكّن من معرفة ان كان مخطّط ما مستويا. ليكن G مخطّط مستوي متّصل. ليكن n عدد قمم a, G عدد حروفه:
مميّزة كوراتوفسكيالرياضي البولوني كوراتوفسكي وضع الميّزة التالية للمخطّطات المستوية :
'التمديد بالنّسبة لمخطّط هو نتيجة إضافة قـمّة أو أكثر لحرف أو عدّة حروف (مثلا، تحويل الحرف•——• إلى •—•—•). انظر أيضًامراجع
|