Dalam teori probabilitas dan statistika, korelasi, juga disebut koefisien korelasi, adalah nilai yang menunjukkan kekuatan dan arah hubungan linier antara dua peubah acak (random variable).
Korelasi ρX, Y antara dua peubah acakX dan Y dengan nilai yang diharapkan μX dan μY dan simpangan baku σX dan σY didefinisikan sebagai:
Karena μX = E(X),
σX2 = E(X2) − E2(X) dan
demikian pula untuk Y, maka dapat pula ditulis
Korelasi dapat dihitung bila simpangan baku finit dan keduanya tidak sama dengan nol. Dalam pembuktian ketidaksamaan Cauchy-Schwarz, koefisien korelasi tak akan melebihi dari 1 dalam nilai absolut. Korelasi bernilai 1 jika terdapat hubungan linier yang positif, bernilai -1 jika terdapat hubungan linier yang negatif, dan antara -1 dan +1 yang menunjukkan tingkat dependensi linier antara dua variabel. Semakin dekat dengan -1 atau +1, semakin kuat korelasi antara kedua variabel tersebut.
Jika variabel-variabel tersebut saling bebas, nilai korelasi sama dengan 0. Namun tidak demikian untuk kebalikannya, karena koefisien korelasi hanya mendeteksi ketergantungan linier antara kedua variabel. Misalnya, peubah acak X berdistribusi uniform pada interval antara -1 dan +1, dan Y = X2. Dengan demikian nilai Y ditentukan sepenuhnya oleh X, sehingga
Koefisien korelasi non-parametrik
Koefisien korelasi Pearson merupakan statistik parametrik, dan ia kurang begitu menggambarkan korelasi bila asumsi dasar normalitas suatu data dilanggar. Metode korelasi non-parametrik seperti ρ Spearman and τ Kendall berguna ketika distribusi tidak normal. Koefisien korelasi non-parametrik masih kurang kuat bila dibandingkan dengan metode parametrik jika asumsi normalitas data terpenuhi, tetapi cenderung memberikan hasil distrosi ketika asumsi tersebut tak terpenuhi.
Metode pengukuran yang lain untuk mengetahui dependensi antara dua peubah acak
Untuk mendapatkan suatu pengukuran mengenai dependensi data (juga nonlinier), dapat digunakan rasio korelasi yang mampu mendeteksi hampir segala dependensi fungsional.
Kopula dan korelasi
Banyak orang yang keliru menganggap bahwa informasi yang diberikan dari sebuh koefisien korelasi sudah cukup mendefinisikan struktur ketergantungan (dependensi) antara peubah acak. Namun untuk mengetahui adanya ketergantungan antara peubah acak harus dipertimbangkan pula kopula antara keduanya. Koefisien korelasi dapat didefinisikan sebagai struktur ketergantungan hanya pada beberapa kasus, misalnya dalam fungsi distribusi kumulatif pada distribusi normal multivariat.
Matriks korelasi
Matriks korelasi n peubah acak X1, ..., Xn adalah n × n matrik dimana i,j adalah corr(Xi, Xj). Jika ukuran korelasi yang digunakan adalah koefisien momen-produk, matriks korelasi akan sama dengan matriks kovarians peubah acak yang telah distandarkan Xi /SD(Xi) untuk i = 1, ..., n. Sehingga, matriks korelasi merupakan matriks definit tak-negatif.
Matriks korelasi selalu simetris, yakni korelasi antara dan adalah sama dengan korelasi antara and ).