Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Amitsur complex di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan.
(Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan penerjemahan artikel)
Dalam aljabar, kompleks Amitsur adalah kompleks alami yang terkait dengan homomorfisme gelanggang. Kompleks ini diperkenalkan oleh Shimshon Amitsur. Ketika homomorfisme dikatakan datar dan setia (bahasa Inggris: faithfully flat), maka kompleks Amitsur adalah eksak (yang menentukan resolusi) dasar dari teori penurunan rata tepat.
Misal adalah homomorfisme dari gelanggang yang tidak memerlukan sifat komutatif. Untuk memulainya, yang harus dilakukan pertama adalah mendefinisikan himpunan kosimplisial (dengan merujuk pada , bukan ). Kemudian, definisikan wajah peta dengan menyisipkan 1 pada titik ke-i :[a]
Kemudian, definisikan degenerasi dengan mengalikan ke-i dan titik-(i' ' + 1):
Definisi-definisi di atas memenuhi identitas sederhana "jelas", dan dengan demikian, adalah himpunan kosimplisial. Hal tersebut menentukan kompleks dengan augumentasi pada kompleks Amitsur:[2]
dengan
Ketepatan kompleks Amitsur
Kasus faithfully flat
Dalam notasi di atas, jika adalah rata tepat kanan, maka teorema Alexander Grothendieck menyatakan bahwa kompleks (imbuhan) adalah eksak dan karenanya adalah resolusi. Lebih umum, jika adalah rata tepat kanan, maka M untuk setiap modul kiri-R,
Langkah 1: Pernyataan benar jika terbagi sebagai homomorfisme gelanggang.
Bahwa "terbagi " adalah menyatakan untuk beberapa homomorfisme ( merupakan retraksi dan terbagi ). Diberikan sebagai
oleh
Perhitungan yang mudah menunjukkan identitas berikut: dengan ,
.
Hal ini untuk menyebutkan bahwa h adalah operator homotopi dan dengan demikian sebagai menentukan nol peta pada kohomologi: yaitu, kompleksnya adalah eksak.
Langkah 2: Pernyataan tersebut benar secara umum.
Kami berkomentar bahwa adalah bagian dari . Jadi, Langkah 1 yang diterapkan pada homomorfisme gelanggang terbagi menyatakan:
dimana adalah eksak. Karena , dsg., dengan "rata tepat" maka urutan aslinya adalah eksak.