Daftar istilah teori kategori Glosarium ini merupakan daftar sifat-sifat dan konsep-konsep di dalam teori kategori dalam ilmu matematika.
Artikel ini menggunakan notasi dan mengikuti konvensi berikut:
- [ n ] = {0, 1, 2, …, n }. Persamaan ini dilihat sebagai sebuah kategori dengan menuliskan .
- Cat (dari bahasa Inggris: category), kategori dari kategori-kategori (kecil), objek-objeknya merupakan beberapa kategori (yang kecil terhadap suatu semesta) dan fungtor morfismenya.
- Fct ( C, D ), kategori fungtor: kategori fungtor dari kategori C ke kategori D .
- Set, kategori himpunan (kecil).
- s Set, kategori himpunan simplisial.
- Jika salah satu dari kata "lemah" dan kata "ketat" dapat menyifati sebuah istilah, maka yang dimaksud adalah yang "lemah"; misalnya "kategori-n" berarti "kategori-n yang lemah" dan bukan yang ketat.
- Menyebutkan kategori ∞ secara umum bermaksud secara khusus membicarakan tentang kuasi-kategori — model kategori ∞ yang paling populer.
- Angka nol 0 adalah bilangan asli.
A
- abelian
- Sebuah kategori dikatakan abelian jika memiliki nol obyek, memiliki pullbacks and pushouts, serta semua monomorphisms dan epimorphisms normal.
- accessible
- 1. Given a cardinal number κ, an object X in a category is κ-accessible (or κ-compact or κ-presentable) if commutes with κ-filtered colimits.
- 2. Given a regular cardinal κ, a category is κ-accessible if it has κ-filtered colimits and there exists a small set S of κ-compact objects that generates the category under colimits, meaning every object can be written as a colimit of diagrams of objects in S.
- additive
- A category is additive if it is preadditive (to be precise, has some pre-additive structure) and admits all finite coproducts. Although "preadditive" is an additional structure, one can show "additive" is a property of a category; i.e., one can ask whether a given category is additive or not.[1]
- adjunction
- An adjunction (also called an adjoint pair) is a pair of functors F: C → D, G: D → C such that there is a "natural" bijection
- ;
F is said to be left adjoint to G and G to right adjoint to F. Here, "natural" means there is a natural isomorphism of bifunctors (which are contravariant in the first variable.)
- algebra for a monad
- Given a monad T in a category X, an algebra for T or a T-algebra is an object in X with a monoid action of T ("algebra" is misleading and "T-object" is perhaps a better term.) For example, given a group G that determines a monad T in Set in the standard way, a T-algebra is a set with an action of G.
- amnestic
- A functor is amnestic if it has the property: if k is an isomorphism and F(k) is an identity, then k is an identity.
B
- seimbang
- Sebuah kategori dikatakan seimbang jika setiap bimorphism-nya (mono and juga epi) isomorphism.
- Beck's theorem
- Beck's theorem characterizes the category of algebras for a given monad.
- bicategory
- A bicategory is a model of a weak 2-category.
- bifunctor
- A bifunctor from a pair of categories C and D to a category E is a functor C × D → E. For example, for any category C, is a bifunctor from Cop and C to Set.
- bimonoidal
- A bimonoidal category is a category with two monoidal structures, one distributing over the other.
- bimorphism
- A bimorphism is a morphism that is both an epimorphism and a monomorphism.
- Bousfield localization
- See Bousfield localization.
- ^ Remark 2.7. of https://ncatlab.org/nlab/show/additive+category
|