Jika terdapat lebih dari satu keadaan dasar, mereka dapat dikatakan sebagai keadaan terdegenerasi. Banyak sistem memiliki keadaan dasar terdegenerasi. Degenerasi muncul ketika terdapat suatu kesatuan operator yang bertindak tak biasa pada keadaan dasar dan menggantinya dengan sistem Hamiltonian.
Menurut hukum ketiga termodinamika, suatu sistem pada suhunol absolut terdapat dalam keadaan dasarnya; karena itu, entropinya ditentukan melalui degenerasi keadaan dasarnya. Banyak sistem, seperti suatu kisi kristal sempurna, memiliki keadaan dasar yang unik dan karenanya memiliki nol entropi pada nol absolut. Keadaan tereksitasi tertinggi juga memungkinkan untuk memiliki suhu bernilai nol mutlak pada sistem yang memperlihatkan suhu negatif.
Energi pada titik nol merefleksikan kebutuhan terhadap gerakan minimum dari suatu partikel karena lokalisasi. Energi titik nol terjadi di seluruh potensial keadaan terikat. Dalam kasus potensial pengikatan, keadaan energi terendah memiliki suatu energi yang lebih tinggi dari energi potensial minimum. Hal ini sangat kontras dengan mekanika klasik, di mana energi terendah yang mungkin sama dengan nilai terendah energi potensial, dengan energi kinetik nol.[2] Dalam mekanika kuantum, namun, keadaan terendah tidak meminimalkan potensial sendirian, tetapi berlaku untuk jumlah energi kinetik dan potensial, dan hal ini mengarah pada keadaan dasar terbatas atau energi titik nol.[3]
Tanpa adanya gerakan pada titik nol, atom tidak dapat stabil, dan elektron dapat jatuh ke arah inti. Energi titik nol pulalah yang berperan mencegah helium untuk membeku pada suhu yang sangat rendah.[4][5]
Dengan menganggap energi rata-rata suatu keadaan dengan node di x = 0; i.e., ψ(0) = 0. Rerata energi dalam keadaan ini adalah
di mana V(x) adalah potensial.
Menganggap bahwa interval kecil antara ; yaitu, . Ambil fungsi gelombang baru ψ'(x) untuk didefinisikan sebagai , untuk ; dan , untuk ; dan konstan bagi . Jika cukup kecil, hal ini selalu mungkin dilakukan, sehingga ψ'(x) kontinu.
Menganggap berada sekitar , maka dapat ditulis
di mana adalah norm.
Perhatikan bahwa kerapatan energi kinetik di mana-mana karena normalisasi. Lebih penting lagi, rata-rata energi kinetik diturunkan melalui melalui deformasi menjadi ψ'.
Sekarang, pertimbangkan energi potensial. Untuk kepastian, pilih . Maka jelas bahwa, di luar interval , kerapatan energi potensial lebih kecil untuk ψ' karena terdapat .
Di sisi lain, dalam interval diperoleh
yang memiliki orde .
Namun, kontribusi energi potensial dari wilayah ini bagi keadaan ψ dengan suatu node adalah
lebih rendah, tapi masih dengan orde yang lebih rendah seperti pada keadaan terdeformasi ψ', dan tunduk pada penurunan energi kinetik rata-rata.
Oleh karena itu, energi potensial tidak berubah sesuai orde , jika mendeformasi keadaan dengan sebuah node ke keadaan ψ' tanpa node, dan perubahan dapat diabaikan.
Karenanya, seluruh node dapat dihilangkan dan energi dikurangi melalui , yang berarti bahwa ψ' tidak dapat merupakan suatu keadaan dasar. Dengan demikian fungsi gelombang kondisi dasar tidak dapat memiliki node. Hal ini melengkapi pembuktiannya.
Contoh
Fungsi gelombang pada keadaan dasar dari suatu partikel dalam kotak satu dimensi adalah gelombang sinus setengah periode, yang mengarah pada nol di dua ujung lembahnya.[7] Energi partikelnya adalah , di mana h adalah konstanta Planck, m adalah massa partikel, n adalah keadaan energi (n = 1 merujuk pada energi saat keadaan dasar), dan L adalah lebar lembah.[8]
Fungsi gelombang dari keadaan dasar atom hidrogen adalah distribusi simetris secara sferis yang berpusat di inti, yang membesar pada pusat dan mengecil secara eksponensial pada jarak yang lebih besar. Elektron kemungkinan besar ditemukan pada jarak dari inti yang sama dengan jari-jari Bohr.[9] Fungsi ini dikenal sebagai orbital atom 1s. Untuk hidrogen (H), elektron dalam keadaan dasar memiliki energi −13,6 eV, relatif terhadap energi ionisasi.[10] Dengan kata lain, 13.6 eV adalah input energi yang diperlukan agar elektron tidak lagi terikat dengan atom.
Definisi pasti dari satu detikwaktu sejak tahun 1997 adalah durasi periode 9.192.631.770 radiasi yang merujuk pada transisi antara dua tingkat hiperhalus pada keadaan dasar atom sesium-133 atom dalam keadaan istirahat pada suhu 0 K.[11]
^Davies, John H. (2006). The Physics of Low-Dimensional Semiconductors: An Introduction (dalam bahasa Inggris) (edisi ke-6 cetak ulang). Cambridge University Press. hlm. 1. ISBN978-0-521-48491-6.
^Lowe, John P.; Peterson, Kirk (2011). Quantum Chemistry (dalam bahasa Inggris). Elsevier. ISBN9-780080470788.
^Millar, Tom (10 Desember 2003). "Lecture 7, Emission Lines — Examples". PH-3009 (P507/P706/M324) Interstellar Physics (dalam bahasa Inggris). University of Manchester. Diarsipkan dari versi asli tanggal 2011-11-16. Diakses tanggal 5 Februari 2008.