The use of electric vehicles in addition to reducing environmental concerns can play a significant role in reducing the peak and filling the characteristic valleys of the daily network load. In other words, in the context of smart grids, it is possible to improve the battery of electric vehicles by scheduling charging and discharging processes. In this research, the issue of controlling the charge and discharge of electric vehicles was evaluated using a variety of neural models, until the by examining the effect of the growth rate of the penetration level of electric vehicles of the hybrid type that can be connected to the distribution network, the results of the charge management and discharge model of the proposed response are examined. The results indicate that due to increased penetration of these cars is increased the amount of responses to charge and discharge management. In this research, a variety of neural network methods, a) neural network method using Multilayer Perceptron Training (MLP), b) neural network method using Jordan Education (RNN), c) neural network method using training (RBF ) Was evaluated based on parameters such as reduction of training error, reduction of network testing error, duration of run and number of replications for each one. The final results indicate that electric vehicles can be used as scattered power plants, and can be useful for regulating the frequency and regulation of network voltages and the supply of peak traffic. This also reduces peak charges and incidental costs, which ultimately helps to further network stability. Finally, the charge and discharge management response reflects the fact that intelligent network-based models have the ability to manage the charge and discharge of electric vehicles, and among the models the amount of error reduction training and testing is very favourable for both RNN, MLP.
Published by | Ital Publication |
Journal Name | Emerging Science Journal |
Contact Phone | - |
Contact Name | - |
Contact Email | - |
Location | , INDONESIA |
Website | ESJ| http://ijournalse.org/index.php/ESJ| |
ISSN | ISSN : 26109182, EISSN : -, DOI : -, |
Core Subject | Social, |
Meta Subject | Environmental Science, |
Meta Desc | Emerging Science Journal is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering and sciences. While it encourages a broad spectrum of contribution in the engineering and sciences. Articles of interdisciplinary nature are particularly welcome. |
Penulis | Moradzaeh, Arash , Khaffafi, Kamran |
Publisher Article | Ital Publication |
Subtitle Article | Emerging Science Journal Vol 1, No 4 (2017): December |
Scholar Google | http://scholar.google.com/scholar?q=%2Bintitle%3A&… |
View Article | http://ijournalse.org/index.ph… |
DOI | https://doi.org/10.28991/ijse-01123 |
DOI Number | DOI: 10.28991/ijse-01123 |
Download Article [1] | http://ijournalse.org/index.php/ESJ/arti… |
Download Article [2] | http://download.garuda.ristekdikti.go.id… |
Informasi yang terkait dengan Comparison and Evaluation of the Performance of Various Types of Neural Networks for Planning Issues Related to Optimal Management of Charging and Discharging Electric Cars in Intelligent Power Grids
Tingkat perbandingan