User talk:BcebulHi Bcebul, and welcome to Wikipedia! Thanks for your contributions to the coolest online encyclopedia I know of =). I sure hope you stick around; we're always in need of more people to create new articles and improve the ones we already have. You'll probably find it easiest to start with a tutorial of how the wikipedia works, and you can test stuff for yourself in the sandbox. When you're contributing, you'll probably find the manual of style to be helpful, and you'll also want to remember a couple important guidelines. First, write from a neutral point of view, second, be bold in editing pages, and third, use wikiquette. Those are probably the most important ones, and you can take a look at some others at the policies and guidelines page. You might also be interested in how to write a great article and possibly adding some images to your articles. Be sure to get involved in the community – you can contact me at my talk page if you have any questions, and you can check out the village pump, where lots of wikipedians hang out and discuss things. If you're looking for something to do, check out the community portal. And whenever you ask a question or post something on a talk page, be sure to sign your name by typing ~~~~. Again, welcome! It's great to have you. Happy editing! --Spangineer (háblame) 11:05, Jun 11, 2005 (UTC) Hi, Thank You, BCeagle0312 (talk) 19:44, 9 July 2008 (UTC) Kutta-JoukowskiHi Bcebul. Thanks for your recent edits to Lift (force). I noticed your edit summary regarding the disproven Kutta-Zhukovsky theorem. The editors who edit this article regularly and who monitor its progress certainly don't regard the Kutta-Joukowski theorem as being disproven. If you continue with this line of thought it is inevitable that some of your work will be reverted. Please use the Talk:Lift (force) page to discuss things you want to eliminate from the article, and particularly if the article states something that you consider to be disproven or scientifically incorrect. Best regards. Dolphin (t) 03:31, 31 March 2011 (UTC) Thanks. Take it up with Hoffman and Johnson who have published their work in a peer reviewed journal: J. Hoffman and C. Johnson, Resolution of d´Alembert's paradox, Online First, Dec 10, 2008, Journal of Mathematical Fluid Mechanics. Journal of Mathematical Fluid Mechanics Sept 12 2008. Bcebul (talk) 05:30, 31 March 2011 (UTC)
Bernoulli's principleHi Bcebul. On 10 June you made an edit to indicate that Bernoulli's principle states that an increase in speed occurs simultaneously with an increase in dynamic pressure and an increase in kinetic energy. I have reverted your edit. I agree that an increase in speed occurs simultaneously with an increase in kinetic energy - that is the consequence of the definition of kinetic energy. Similarly, an increase in the speed of a fluid occurs simultaneously with an an increase in dynamic pressure - that is the consequence of the definition of dynamic pressure. Neither of these changes is linked to the discovery by Bernoulli, now known as Bernoulli's principle. The statement which you edited is supported by citation of the book Aerodynamics by L.J. Clancy. This book does not support the changes you made. Thanks. If Bernoulli's principle implies (rather than says) what I wrote and what is stated later in the article leading to the incompressible flow equation: , then perhaps this important implication and distinction could be introduced earlier for the sake of clarity?Bcebul (talk) 03:10, 10 June 2011 (UTC)
License tagging for File:AllureEnglish.jpgThanks for uploading File:AllureEnglish.jpg. You don't seem to have indicated the license status of the image. Wikipedia uses a set of image copyright tags to indicate this information. To add a tag to the image, select the appropriate tag from this list, click on this link, then click "Edit this page" and add the tag to the image's description. If there doesn't seem to be a suitable tag, the image is probably not appropriate for use on Wikipedia. For help in choosing the correct tag, or for any other questions, leave a message on Wikipedia:Media copyright questions. Thank you for your cooperation. --ImageTaggingBot (talk) 02:05, 11 June 2011 (UTC) Lift direction is usually defined as perpendicular to the flow and drag parallel to flow of apparent wind. Fully agree with you ! i have make the correction thanks to our picture on wp:fr. My english is not fluent, i am not able to translate Forces on sails part Several sails: multidimensional problem resolution in a correct US language. If you are agree we can make this job together (i can help you to translate or the reverse ).
Please note that we are having a discussion on the Sail talk page regarding how best to explain the matter. We would welcome your comments on the talk page, since we are developing consensus text that will then be placed in the article, see Talk:Sail#Thrust.3F.--Gautier lebon (talk) 07:21, 22 June 2011 (UTC) InvitationHi Bcebul. Thank you for your editing at Forces on sails. As discussed there, I am proposing to re-organize the article, using much of the existing material, in order to make the article more accessible. I hope that you will participate. So, I invite you to follow the sandbox page where the reorganization is being drafted. I suggest making comments on that effort at Talk:Forces on sails#Reorganization?. Sincerely, User:HopsonRoad 15:35, 10 March 2015 (UTC) Recent edits to naval architecture articleHi Bcebul Thanks for your edits to the naval architecture article. Although aerodynamics is a main subject in yacht design, it is not so in naval architecture. The article primarily deals with the subject of naval architecture itself and not the design of specific types of vessels. Please feel free to discuss in the article's talk page. ChrysalSnowlax (talk) 03:16, 22 September 2011 (UTC) Thanks, ChrysalSnowlax. That is nonsense. Naval architecture institutions traditionally and to date include aerodynamics in their curricula, as they must due to the fundamental effects of air movement affecting weather, waves and vessels of all sorts, sail or not. To ignore this fact is to make the article incomplete. Also, sailboat design is an important traditional and current aspect of naval architecture and is included in the discipline. Just because some institutions or naval architects may not focus on aerodynamics or limit their curricula from time to time or trend to trend, does not change the fundamentals. See references which you have deleted. Bcebul (talk) 07:41, 12 October 2011 (UTC)
from: http://name.engin.umich.edu/ugrad_course_list NAVARCH 403. Sailing Craft Design Principles Prerequisite: preceded or accompanied by NA 321. II (4 credits) Forces and moments acting on a sailing yacht. Speed polar diagrams. Two- and three-dimensional >>>airfoil theory<<<<. Application to keel and rudder design. >>>>Yacht model testing. Delft Standard Series for prediction of hydrodynamic performance. >>>>Aerodynamics<<<< of yacht sails. Sail force coefficients. Velocity Prediction Program. Rigging design and analysis. Yacht racing rules. and from http://www.amc.edu.au/areas-study Naval Architecture: Naval architects are professional engineers that design and oversee the construction and repair of marine craft and various offshore structures. This includes naval craft, passenger and cargo ships, submarines, high-speed ferries and catamarans, tugs, >>>>yachts<<<< and offshore drilling platforms. and http://www.amc.edu.au/maritime-engineering/course/bachelor-engineering-naval-architecture Course structure This course is structured to be completed in 4 years of full-time study and consists of 8 subjects per year of study. Students meeting the required standards of achievement throughout the course may qualify for an Honours award. Year 1 Mathematics I Design and Computer Aided Drafting (CAD) Programming and Problem Solving for Engineers Statics Materials Technology Mathematics II Dynamics Electrical Fundamentals Year 2 Calculus of Several variables Thermal Engineering Project Engineering Hydrostatics Ship Production Ship Design Mechanics of Solids >>>>> Fluid Mechanics Year 3 Materials of Engineering Design Structural Analysis Ship Resistance and Propulsion Noise and Vibration Ship Dynamics Applied Ship Design Hydrodynamics Finite Element Analysis Year 4 Advanced Ship Structures Ocean Vehicle Design Project (Part 1 & 2) Research Project (Part 1 & 2) Design of Marine Machinery Systems >>>>>> Yacht Design and Technology (Elective) OR Applied Computational Fluid Dynamics (Elective) and http://oe.mit.edu/index.php?option=com_content&task=view&id=37&Itemid=41 SB in Mechanical and Ocean Engineering The Bachelor of Science in Mechanical and Ocean Engineering is designed for students who are interested in mechanical engineering with a specialization in ocean engineering. Within the MIT community this course is called 2-OE. The program incorporates aspects of ocean exploration and utilization of the oceans for transportation, defense, and resources. Courses and research >>>>>covers the disciplines of >>>>fluid dynamics<<<<<, structural mechanics, acoustics, dynamics, materials, and ocean systems and design. The degree prepares students for work in the industry and government in areas including offshore oil recovery, transportation and defense, ocean environment protection, underwater vehicles, global climate monitoring, and computer-aided design. For more information on the degree, visit the Department of Mechanical Engineering. and >>>>http://www.strath.ac.uk/na-me/undergraduatestudies/navalarchitecturewithsmallcraftengineering/ and http://www.rina.org.uk/ijsct.html >>>>International Journal of Small Craft Technology Bcebul (talk) 10:35, 13 October 2011 (UTC)
Drag (physics)Hello Bcebul. Today you made some edits to Drag (physics). (See your diff.) I have deleted your paragraph which stated: Depending on the direction of the velocity of the solid relative to the fluid (a liquid or gas), the drag may be the component of the net aerodynamic or hydrodynamic force acting opposite to the direction of the movement such as in a car or aeroplane, or it may act in the same direction of motion as the solid, such as in a boat sailing down wind. I deleted it for two reasons:
You are free to add information to Drag (physics) when you are able to cite the source or sources from which you obtained the information. Happy editing. Dolphin (t) 04:59, 16 October 2011 (UTC) Thanks Dolphin. Correct, drag is always defined in terms of motion relative to a fluid. It is a force on the solid exerted by the fluid in the direction of the fluid's motion relative to the solid. That is all. There is no part of the definition mentioning the direction of the solid's motion or opposition to or enhancement of the solid's motion. The paragraph in question is only there to illustrate practical application of drag theory. Citations added as requested.Bcebul (talk) 10:08, 16 October 2011 (UTC)
Please be very careful with your additions to Drag (physics). I don't think your additions have improved the quality of the article. In one of your recent edits you added the following sentence: In the case of laminar flow of fluid in a pipe, viscous drag force on the immobile pipe decreases the magnitude of fluid flow in a direction opposite to the drag force direction. I assume that by the expression the magnitude of fluid flow you mean the flow rate as might be measured in gallons per minute or litres per second or pounds per second. I’m sure you are aware that fluid flow rate is a scalar quantity - it doesn't have direction in the way vectors do. If the rate of fluid flow decreases it is sufficient to say it decreases - it isn't meaningful to say it decreases in one direction or the other. The rate of fluid flow through a pipe will be affected by the drag, regardless of whether the flow is laminar or turbulent. Adding the words in a direction opposite to the drag force is unnecessary and unhelpful. Dolphin (t) 01:55, 17 October 2011 (UTC) Tweaks suggested for your excellent illustrationsHi Bcebul. Thanks for providing and evolving your excellent illustrations on forces that affect a sailboat, File:Boatforcestop.svg and File:Boatforcestern.svg. They appear to have a transparent background, which in some cases renders as a distracting checkerboard pattern. It would be enormously helpful, if you could put a solid background behind them. I could do this in Photoshop, but I'm afraid to destroy your ability to edit the top layer. Also, I could suggest rendering the mainsail opaque in File:Boatforcestop.svg. This would hide the distracting gunnel visible through it in the current version. Cheers, User:HopsonRoad 12:56, 13 March 2015 (UTC) Discussion of WikimediaHi Bcebul. Thanks for your suggestions on the Cl and Cd diagram at Wikimedia. I have more thoughts there. Cheers, User:HopsonRoad 22:03, 27 March 2015 (UTC) Hi Bcebul, I'd like to invite you to help me solve the issues that various editors have raised at Talk:Forces on sails. I can tell that working on this article gives you great pleasure and satisfaction, which I also derive from my editing activities. Editing gives an opportunity both to learn for oneself and to teach others—both of which can be very satisfying. Such dedication, unfortunately, has the risk of a sense of ownership of an article. I can tell from the civility of your responses in talk pages that you are a person of WP:Good faith. It would be great, however, to see more participation in discussion. I note that, of your last 500 edits, only 28 of them were at the Talk:Forces on sails page. I feel that you are trying to be responsive to ideas that I post there—harmonizing nomenclature and incorporating diagrams—but I'm concerned that you have missed the bigger concern about how to make technical articles understandable (see this link). You'll note that I have tried to follow that guidance in the sandbox, especially the "Rules of thumb":
I wanted to have this conversation with you, because the alternative seems to be major remodeling of what you have worked on without your participation and that would make you feel bad and lead to edit warring and, ultimately, arbitration. I don't want that for either of us. So, I can suggest two approaches, both of which involve a hiatus in working directly in the article: 1. let's discuss the article at the Talk:Forces on sails page in light of Wikipedia:Make technical articles understandable and/or 2. let's do further editing in the sandbox. How about a joint goal of making this a WP:Good Article? There are only two in Wikipedia:WikiProject Sailing, one of which looks dubious to me! Sincerely, User:HopsonRoad 12:01, 28 March 2015 (UTC) Hi, PolioHi, I've reversed your edit because it was inaccurate. There's plenty of evidence that the inactivated virus vaccine works - you can check anty of the other citations in this section. Your citation was looking at a very different scenario for the control of cVDPV which is different from epidemic polio. Bob (talk) 21:15, 5 December 2022 (UTC)
|