In mathematics, the q -Charlier polynomials[ 1] are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme . Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010 , 14) give a detailed list of their properties.
Definition
The polynomials are given in terms of the basic hypergeometric function by
C
n
(
q
−
x
;
a
;
q
)
=
2
ϕ
1
(
q
−
n
,
q
−
x
;
0
;
q
,
−
q
n
+
1
/
a
)
.
{\displaystyle \displaystyle C_{n}(q^{-x};a;q)={}_{2}\phi _{1}(q^{-n},q^{-x};0;q,-q^{n+1}/a).}
References
^ There are similar named polynomials named alternative q-Charlier polynomials
K
n
(
x
;
a
;
q
)
{\displaystyle K_{n}(x;a;q)}
which is another name for q-Bessel polynomials.
Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series , Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press , ISBN 978-0-521-83357-8 , MR 2128719
Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues , Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag , doi :10.1007/978-3-642-05014-5 , ISBN 978-3-642-05013-8 , MR 2656096
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Chapter 18: Orthogonal Polynomials" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .
Sadjang, Patrick Njionou. Moments of Classical Orthogonal Polynomials (Ph.D.). Universität Kassel. CiteSeerX 10.1.1.643.3896 .